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1 Introduction

This short text introduces the idea that linguistic meaning can be thought of in probabilistic terms,
extending older common views on what meaning is and using basic concepts from information
theory (Shannon, 1948). The goal of this text is to help students grasp the philosophy behind
contemporary computational theories of semantics and pragmatics. This text will not review or
introduce these theories, but rather focus solely on the conceptual underpinnings of the very idea
that meaning could be probabilistic.

2 Meaning as update

The following advice by the philosopher David Lewis has been hugely influential in our thinking
about meaning: “In order to say what a meaning is, we may first ask what a meaning does and
then find something that does that” (Lewis, 1970). A common answer to what meanings do is that
they allow language users to navigate a hypothesis space that concerns the interlocutors and the
world they inhabit. Humans are not omniscient - there are always things we don’t know. For
instance, I may be in the dark as to whether or not Sue has any siblings. This creates a hypothesis
space:

‘ Sue is an only child ‘ Sue is not an only child ‘

A hypothesis space is a set of alternative states of affairs, each of which we entertain as possibly
being the actual state of affairs. I will refer to these alternatives as (alternative) possibilities.
Linguistic meaning is the property that sentences have that allows interlocutors to narrow down
this space of options that are still compatible with what we know. When Sue says T have a
brother’ , then (providing I trust Sue) I can update the hypothesis space by removing the option
that is now no longer compatible with Sue’s utterance. As a result, the hypothesis space has been
resolved: there is just the single possibility left.



Sue is an only child ‘ Sue is not an only child ‘

Sue: “I have a brother’

H

| Sue is not an only child |

It is often assumed that all linguistic utterances address an implicit (and sometimes explicit) Ques-
tion under Discussion (QUD). For Sue’s T have a brother’ that could for instance be the question
‘Does Sue have siblings?’. Crucially, it is this question that determines what hypothesis space we
are considering. That is, the hypothesis space induced by a question under discussion is the set of
its possible answers. For a binary QUD like ‘Does Sue have siblings?’, we get a binary hypothesis
space, such as the one above.

It is the conversational context that determines the QUD, not the uttered sentence. For instance,
Sue’s utterance of ‘Thave a brother’ is also compatible with a situation in which her house burned
down and the QUD is whether or not she has a place to stay, where (presumably) we will interpret
her utterance as conveying that she can move in with her sibling.

Context : Sue’s house just burned down

H

Sue has somewhere to stay ‘ Sue does not have somewhere to stay

¢

Sue: “I have a brother’

i

| Sue has somewhere to stay |

QUDs can induce more complex spaces than the simple example above and in these cases utter-
ances may not fully resolve the question. For instance, if the QUD at hand is ‘How many Harry
Potter books did Sue read?” we get a hypothesis space like this (where the numbers are shorthand
for the number of Harry Potter novels Sue read).

of1]2|3|4]5]6]7]
If Sue now tells me

©: I only read the first three Harry Potter books



then the hypothesis space is fully resolved, as the only possibility from the above space that is
compatible with Sue’s utterance is the cell labelled 3. If, however, Sue tells me

(IR I read more than one Harry Potter book

then the question is not fully resolved. We can only remove the first two possibilities:
[2[3[4]|5]6]7]

As such, ¢ is more informative than . This is because ¢ is compatible with fewer possibilities
than 1) is. As such, ¢ has to potential to remove more possibilities than 1) does. Formally, we can
express the relative informativeness of two sentences in terms of logical entailment. If sentence
S1 entails S2, then S2 is true in all situations that make S1 true. This means that S2 is compatible
with at least the possibilities that S1 is compatible with and possibly with more. This means that
the number of cells removed by an utterance of S2 is smaller or equal than the number of cells
removed by an utterance of S1. So, if S1 entails S2, S1 is at least as informative as S2.

Let’s write 7(.S, @) for the set of possibilities in hypothesis space () that sentence S is compatible
with. Take () to be the space induced by the question ‘How many Harry Potter books did Sue
read?’. Now, m(p, Q) = {3} and 7(¢, Q) = {2,3,4,5,6,7}. We can see that ¢ = 1 (¢ ‘entails’
), since 7(p, Q) C 7(¢¥, Q). As a consequence, ¢ is more informative than .

3 Probabilistic update

We often have certain expectations concerning the hypoth-
esis spaces that language allows us to navigate. For in-
stance, the picture to the right is the view from my office
of Utrecht’s Dom tower.! Every day that I go to work, I see
this view. So, every day that I arrive at my work, I fully ex-
pect the Dom tower to still be there, just like it always has
been. But I don’t know this, since something could have
happened overnight, without me realising. Consequently,
on an average morning before I've gone to the office (and
before I read any news), there is the hypothesis space: {The
Dom tower is gone, The Dom tower is fine}. In such a situa-
tion, however, I will probably consider the probability that
the Dom tower is gone to be much, much lower than the
probability that it is fine.

I'The Dom tower in Utrecht is the tallest church tower of the Netherlands. The tower was built between 1321 and
1382.



So, the possibilities in hypothesis spaces come with subjective probabilities, measures of what

we expect to be the case. For instance, in the context just sketched a hypothesis space could look
like this:

The Dom tower is gone | The Dom tower is fine
0.00001 0.99999

Adding probabilities like this turns hypothesis spaces into random variables. That is, a question
under discussion induces a sample space, namely the set of possibilities, and a probability func-
tion that returns a probability for each possibility in the space. In other words, our probabilistic
expectations with respect to a hypothesis space turn that space into a probability distribution.

Now, consider two alternative language statements, (1-a) or (1-b):

(1) a. The Dom tower collapsed.
b.  The Dom tower didn’t collapse.

It should be clear that given the background given by the hypothesis space, it would be much
more surprising that (1-a) is the case than (1-b). We can express this with Shannon’s measure of
surprisal I:

I(x) = —log(P(x))

Since (1-a) identifies the possibility that we assigned a probability of 0.00001, we can associate
that utterance with a surprisal value of —log(0.00001) ~ 16.61. (Here and in what follows, I use
base 2 for logarithms, but nothing substantial rests on what base is used.) For (1-b), the surprisal
is much lower, namely —/0g(0.99999) ~ 0.000014. So, (1-a) comes with a much higher surprisal
than (1-b). These surprisal values have an interpretation both from the comprehension and from
the production perspective. The high surprisal value of (1-a) means that this sentence is not
expected to be true. The low surprisal value of (1-b), however, means that this sentence is not
expected to be uttered. Since the Dom tower hasn’t fallen down for centuries and since it is not
expected to fall down, it seems a waste of energy to assert that (once again) it hasn’t collapsed.
This in turn triggers a pragmatic effect whenever a sentence like (1-b) is uttered. If I wake up
one morning an see (1-b) as a headline, I am likely to conclude that my presumptions about the
hypothesis space (in particular that it was extremely unlikely that anything would happen to the
Dom tower overnight) were wrong. That is, I conclude from it not just that the Dom tower is fine,
but also that it was likely not to be fine.

Our expectations do not need to be so biased as in the Dom tower example. Say it’s winter and I
built a snowman. I wake up the next morning and wonder whether the snowman has survived
the night. If I really have no idea, then the possibilities in the hypothesis space would be equi-
probable:



The snowman is gone | The snowman is fine
0.5 0.5

As a consequence, whatever way this question under discussion is resolved, the surprisal of that
resolution will always be —l0g(0.5) = 1. We can quantify the intuition that our snowman sce-
nario contained less prior uncertainty than our Dom tower scenario by calculating the expected
surprisal. This is the information theoretic notion of entropy. Let X = (X, P) be a hypothe-
sis space where X = {xy,x9,...,2,} is the set of possibilities and P a function that provides
probabilities for the possibilities in such a way that they sumup to 1,ie. > . P(z) = 1.

H(X)= =) P(z)log(P(z))

zeX

Doing the maths results in:

(2) a. H(Dom tower scenario) = - (1e-5- log(1e-5)+1-(1e-5)- log(1-(1e-5))) = 0.00018
b.  H(snowman scenario) = - (0.5-log(0.5)+0.5- log(0.5)) = 1

The intuition is the following. Entropy is the expected surprisal. In the Dom tower scenario there
is an option with very high surprisal, but that option is extremely unlikely, so it is unlikely that
this surprise becomes actual. In other words, the weight of that high surprisal in the calculation
of expected surprisal is minute. The low surprisal of the other possibility weighs much more
heavily and, as a result, the entropy is low. In the snowman scenario both possibilities have a
surprisal of 1 and both have the same probability. On average then, we expect a surprisal of 1.

Note that once a question under discussion has been fully resolved there is just a single possibility
left. As a result that possibility will have probability 1. The entropy of that (trivial) hypothesis
space will be 1 - log(1) = 0. That is, there is now no uncertainty.

If we have complete uncertainty about a hypothesis space then that means that all possibilities
are equi-probable. For a set of possibilities X of cardinality n this means that P(z) = % for
all x € X. Such probability distributions are sometimes called flat or uninformative and they
provide the highest possible entropy for a given set. Any distribution over the same space that is
not equi-probable will result in lower entropy, i.e. less uncertainty.

For example, here are two hypothesis spaces for ‘How many Harry Potter books did Sue read?’,
together with their entropy. (Checking these should be an easy exercise.) As you can see, adding
specific expectations to the hypothesis space (e.g. Sue is more likely to have read few books than
many) lowers the uncertainty.

0 1 2 3 4 5 6 7 | entropy =3
1/8 1 1/8 |1/81/8|1/8|1/8|1/8|1/8




0 1 2 3 4 5 6 7 | entropy = 2.35
0.4 103 |0.05|0.05|0.05]0.05|0.05|0.05

4 Semantic update and conditional probability

The probabilities we assigned to possibilities in the previous section were simple subjective proba-
bilities. The effect of an assertive utterance on the context can be expressed in terms of conditional
probabilities. That is, updating the context on the basis of an accepted assertion means that we
update the contextual probability distribution to one conditioned on the assertion being true.

Take once more the QUD that wants to know how many Harry Potter books Sue has read and

let’s assume all possibilities are equi-probable. We then have, for instance, that P(3) = %. We

can see the effect of an utterance as a conditional probability. Take the sentence v ( ‘Sue read more
than one Harry Potter book’). The conditional probability P(3|¢) expresses the probability that

Sue read 3 Harry Potter books, given that we know that she read more than one. Recall that:

P(AB) = %

Let’s apply this. P(3|¢) = Pl(f(/x). Let’s first calculate P(v). Well, ¢ is true in all possibilities

except for 0 and 1. That means that the probability of ¢ being true is g. What is the probability
that both 3 is the actual possibility while at the same time 1) being true? That is %. And, so,

P(3lY) = g.

So, updating with 1) gives us a new probability distribution, namely the distribution P(x| Sue
read more than one Harry Potter book) with the following values:

01| 2 3 4 5 6 7
0|0]|1/6|1/6|1/6|1/6 | 1/6 | 1/6
And P(x| Sue read the first three Harry Potter books) is the distribution:
0/ 1|{2|3|4|5|6|7
0(j0|0(1]0[0]0O|0O0
Things proceed in exactly the same way in cases where the original expectations for the possi-

bilities are not all equi-probable. For instance, if the prior expectation are as follows

0 1 2 3 4 5 6 7
0.4(03|0.05|0.05]0.05]|0.05|0.01|0.09



it should be easy to check that P(z|'Sue read more than one Harry Potter book’) is the following
distribution:
0|1| 2 3 4 5 6 7
0101017 10.17 | 0.17 | 0.17 | 0.03 | 0.30

5 'The speaker’s perspective

The conditional probability distributions in the previous section were of the form P(p|u): the
probability that p is the actual possibility given the fact that utterance u has taken place. This
takes the view of the hearer, since it tells us how to view the world on the basis of what the
speaker has told us. In this section we take the view of the speaker by turning things around. We
want to predict P(u|p): the probability that the speaker performs utterance u given the fact that
she believes p to be the actual possibility.

It is common to take a Gricean perspective when reasoning about the choices that hearers and
speaker have in conversational contexts. This means that there is an assumption that choices
made by hearer and speaker in social situations are such that they serve a common communicative
goal. One example of this is that speakers are as informative as they can be without compromising
truthfulness.

Say that a speaker believes that Sue read all Harry Potter books and say that this speaker is
deciding between uttering one the following three sentences:

(3) Sue read none of the Harry Potter books.
(4) Sue read all of the Harry Potter books.

(5) Sue read some of the Harry Potter books.

How does the speaker make this choice? Intuitively, we would want to say that sentence (3) is
useless for this speaker, since it does not match her beliefs. Sentence (4) is intuitively a good
choice, since it does match her beliefs. Finally, this speaker will judge sentence (5) to be true, but
not as useful an utterance as (4), since it is compatible with a lot more situations than the one she
believes to be the case. For these reasons, (4) is clearly the best sentence to utter, (3) should not
be considered and (5) should be dispreferred.

These intuitions can quite easily be captured probabilistically, if we assume that the utility of a
sentence is determined by the likelihood that a hearer matches your beliefs once they believe this
sentence to be true. In other words, the utility of a sentence depends on the surprisal of the actual
possibility, conditioned on the sentence being true. A sentence is useful, if the actual possibility
has low surprisal, once we assume the sentence to be true. If on the assumption that the sentence
is true the suprisal of the actual possibility is high, then the sentence has low utility, since the



sentence is not helping us to identify the actual possibility. In other words, we can quantify the
utility of a sentence given some possibility believed to be actual, by simply taking the negative
surprisal:?

U(u,p) = log(P(p|u))

Let’s assume that we have no prior expectations about how many Harry Potter books Sue read:

0 1 2 3 4 5 6 7
1/8 | 1/8 | 1/8 | 1/8 | 1/8 | 1/8 | 1/8 | 1/8

We then get the following conditional probability distributions for the three sentences:

sentence (3), none

0/1|2|3|4|5|6|7
1{0{0]0]0]|0O|0]|O0

sentence (4), all

0/1|/2|3|4|5|6|7
0/(0(0]0]0]0O0]|O0]1

sentence (5), some

0| 1 2 3 4 5 6 7
0|17 |17 17|17 |17 |17|1/7

Using these to calculate the utility of the three sentences given the belief that Sue read all 7 Harry
Potter books, we get the following:

Table 1: Probabilities and utilities for sentences in possiblity 7
sentence utteredin7 P(7 |u) U(u,p)

(3), none 0 -00
(4), all 1 0
(5), some 1/7 -2.81

In other words, sentence (4) has the highest utility out of the three sentences and sentence (3)
has the lowest possible utility. The next question is how the speaker could use this information
to make a decision about the sentence she should utter. Here, there are various possible models
of speaker behaviour. One is that the speaker simply chooses the most optimal sentence. That is,
the speaker chooses the sentence with highest utility, which in this case is (4), with a utiltiy of 0.
Another option, is that the speaker’s choice can be captured probabilistically. That is, sentences

2This is notoriously confusing terminology. For clarity: surprisal is the negative logarithm of a probability. Since
the logarithm of a probability is a negative number, suprisal amounts to a positive number. Negative surprisal will
therefore be the positive logarithm of a probability and is therefore a negative number.
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Figure 1: The effect of the temperature parameter « in the softmax on speaker behaviour for a
speaker who believes 7 to be actual. Each panel shows the probability that the speaker chooses
a specific sentence on the basis of the utilities in table 1, given some value for a.

with high utility are chosen more often than sentences with lower utility. Since information about
how exactly utilities map to choices is latent, this kind of probabilistic choice is often modelled
using a softmax function with a temperature parameter. The function takes a vector of values
U = v109V3 . . . U, and returns a probability distribution of the same length.

av;

e
Jj=n
J=1

S(v;) =

eO[’Uj
We can use the softmax to model the speakers choice:

eO‘U(uvp)

Pspeaker(u|p) = W

The three plots in figure 1 show the effects of the softmax.

With values for alpha closer to 0, the softmax diminishes the role that utility plays in the speaker’s
choice. With higher values, it amplifies that role, making the speaker favour the best option over
all others.
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Figure 2: Predictions of the simple hearer model presented in section 6, for the QUD ‘how many
Harry Potter books did Sue read?’, given flat expectations for the possible answers to that QUD.

6 'The hearer’s perspective

So far, we’ve seen how to use the surprisal of the content of a sentence as a basis for modeling the
choice that a speaker makes when she wants to convey her beliefs about where in the hypothesis
space the actual possibility is. How could we now model a cooperative hearer? A hearer receives
a certain sentence in the form of some utterance. The hearer’s task is to select the possibility that
best fits this sentence, given the choice that the speaker made. In other words, the hearer chooses
a possibility proportional to the likelihood that the speaker would have uttered the given sentence
had she been in that possibility. As a result, we can model hearer choice as a simple application
of Bayes’ law:

Ps eaker(u|p)P(p)
R earer \P|U) = L
" ( | ) Zp/ Pspeaker(u|p/)P(p,)

Figure 2 shows the result of applying this equation to the Harry Potter example. The plots are the
results given a flat prior probability for the possibilities and they show how adjusting assumptions
about the speaker (via the value of «) yields subtly different predictions for the hearer. The key
prediction made here is that hearers draw a so-called implicature from the sentence with “some”.
If a speaker chooses to use that quantifier, she is unlikely to believe that the corresponding “all”
sentence is true, since in that case her utility of using “all” would have trumped the much lower
utility of using “some”.

According to the hearer model above, the role of an utterance in a conversation is that it allows
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a hearer to update a prior distribution over a hypothesis space to a posterior one. In section 4, I
showed a semantic way of doing this, namely by simply updating the prior probability P(x) to
P(z|u), the conditional probability given the assumption that the utterance is true. The model
above constitutes a pragmatic update. It models how the prior changes, based on what we now
about the likelihood of the speaker performing utterances, given that a certain sentence has been
uttered.

If you want to understand how 2 came about: Appendix A shows the calculations that lead up to
the plots in figure 2.

7 Further readings

In this final section, I give pointers to the literature where the ideas above emerge and / or are
introduced with more depth.

First of all, the idea that the role that (propositional) meaning plays in linguistic communication
is one of updating a space of possibilities is mostly attributed to Stalnaker (1978). It was hugely
influential in philosophy of language and forms one of the conceptual pillars of certain strands of
dynamic semantics (Groenendijk and Stokhof 1991; Veltman 1996, see also Nouwen et al. 2016.)
The notion of question under discussion was introduced in Roberts (1996, 2012).

Much of the above rests on Paul Grice’s view of linguistic communication as a cooperative, social
activity (Grice, 1975, 1978) and the Gricean and neo-Gricean theories of pragmatics that were
subsequently developed (Horn, 1984; Levinson, 2000), as well as proposals that cast Gricean ideas
in game-theoretic terms (Parikh, 1991, 1992; Blutner, 2000; Van Rooij and Franke, 2006). The
game-theoretical basis for communication can be traced back to Lewis (1969).

The probabilistic, quantitative use of the notion of update to model semantic and (especially)
pragmatic phenomena was mostly developed within game-theoretical approaches to meaning
(Benz et al., 2006; Franke, 2009). Later, similar theories were developed in psychology (Frank
et al., 2009; Frank and Goodman, 2012), leading to the rational speech act framework (Scontras
et al., 2021; Degen, 2023), resulting in a wealth of computational approaches to semantic and
pragmatic phenomena (e.g. Bergen et al. 2016; Lassiter and Goodman 2017; Yoon et al. 2020;
Nouwen 2024b,a). What I presented above in section 5 and 6 is an information-theoretic rationale
for the basic setup of that framework.
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A Calculations

Truth values Utility
none some  all none some  all
1 1.00 0.00 0.00 1 0.00 -0 -0
2 0.00 1.00 0.00 2 -0 -2.81 -0
3 0.00 1.00 0.00 3 -0 -2.81 -0
4 0.00 1.00 0.00 4 -0 -2.81 -0
5 0.00 1.00 0.00 5 -0 -281 -0
6 0.00 1.00 0.00 6 -o0  -281 -
7  0.00 1.00 0.00 7 -0 -2.81 -0
8 0.00 1.00 1.00 8 -oo  -2.81 0.00
Speaker Hearer
none some all none some all
1 1.00 0.00 0.00 1 1.00 0.00 0.00
2 0.00 1.00 0.00 2 0.00 0.15 0.00
3 0.00 1.00 0.00 3 0.00 0.15 0.00
4 0.00 1.00 0.00 4 0.00 0.15 0.00
5 0.00 1.00 0.00 5 0.00 0.15 0.00
6 0.00 1.00 0.00 6 0.00 0.15 0.00
7 0.00 1.00 0.00 7 0.00 0.15 0.00
8 0.00 0.49 0.51 8 0.00 0.08 1.00
Speaker Hearer
none some  all none some  all
1 1.00 0.00 0.00 1 1.00 0.00 0.00
2 0.00 1.00 0.00 2 0.00 0.17 0.00
3 0.00 1.00 0.00 3 0.00 0.17 0.00
4  0.00 1.00 0.00 4  0.00 0.17 0.00
5 0.00 1.00 0.00 5 0.00 0.17 0.00
6 0.00 1.00 0.00 6 0.00 0.17 0.00
7  0.00 1.00 0.00 7 0.00 0.17 0.00
8 0.00 0.06 0.94 8 0.00 0.01 1.00
Speaker Hearer
none some all none some all
1 1.00 0.00 0.00 1 1.00 0.00 0.00
2 0.00 1.00 0.00 2 0.00 0.17 0.00
3 0.00 1.00 0.00 3 0.00 0.17 0.00
4 0.00 1.00 0.00 4 0.00 0.17 0.00
5 0.00 1.00 0.00 5 0.00 0.17 0.00
6 0.00 1.00 0.00 6 0.00 0.17 0.00
7  0.00 1.00 0.00 7 0.00 0.17 0.00
8 0.00 0.00 1.00 8 0.00 0.00 1.00
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