
lecture notes on
Formal Languages

Rick Nouwen

Version number: 5.31, December 16, 2024

Contents

1 Formal languages 1
1.1 Strings . 1
1.2 The Kleene star . 2
1.3 Formal languages and decision problems 4
1.4 Computability . 6
1.5 How many languages are there? . 7
1.6 Formal versus natural language . 9

2 Finite state automata 12
2.1 Formal definition . 14
2.2 Non-determinism . 15
2.3 Acceptance . 17
2.4 Determinism . 19
2.5 Finite state transducers . 20

3 Regular languages 23
3.1 Regular languages and finite state automata 24
3.2 Closure properties . 25
3.3 Non-regularity . 28
3.4 The pumping lemma for regular languages 30

4 Formal grammars 34
4.1 Formal definition . 34
4.2 Derivation . 36
4.3 Parse trees and ambiguity . 37
4.4 Grammar equivalence . 40
4.5 Regular grammars . 41

5 Context-free languages 44
5.1 Push-down automata . 44
5.2 Context-free grammar . 47
5.3 Chomsky Normal Form . 49
5.4 Pumping lemma . 51
5.5 Closure properties . 55
5.6 Mirroring versus copying, and natural language 57

6 Beyond context-free grammars 61
6.1 The Chomsky hierarchy . 61
6.2 Context-sensitive grammars and languages 62
6.3 Tree Adjoining Grammars . 63

These lecture notes introduce the essential concepts underlying formal languages. They
are meant as an overview that enables you to understand and work with formal lan-
guages. These lecture notes presuppose familiarity with set theory.

1 Formal languages
1.1 Strings
A set is the most basic mathematical method of describing collections. The only thing
that matters to a set is the elements that it contains. There is no notion of order in a set,
nor is there a possibility of repeated membership. Something is either in a set or not,
nothing else is relevant. To illustrate, {1, 1} is a very odd way of writing down the set
{1}. There is no difference between {1, 2} and {2, 1}. The set {1, {1}} only contains
the number 1 once, because it has two elements: the number 1 and the set containing
that number.

Order and multiplicity does matter in the pairs we form when we form a Cartesian prod-
uct. For instance, {1, 2} × {1, 2} contains both (1, 2) and (2, 1) as an element. It also
contains the pair (1, 1). So, while two sets are equal if and only if they have the same
elements, two ordered pairs are equal if and only if they have the same elements on the
same positions.

A string is like an ordered pair, except that there are no restrictions on how many ele-
ments it contains. We usually write strings without any extra notation. So, we write 1
for the string just containing a single 1 and we write 111 for the string that has three
positions, each of which contains 1. As with ordered pairs ab 6= ba and aa 6= a.

Nota bene:
As always, we want mathematics to be grounded in set theory and so we would
like ordered pairs and strings to correspond to sets. But how can we do this? How
can we represent order in something that is fundamentally unordered? The Polish
mathematician Kazimierz Kuratowski proposed a way to do this. He identified
the ordered pair (x, y) as the set {{x}, {x, y}}. That is, the first element in an
ordered pair is the element that occurs in all the sets, while the second element
is the element that occurs in just one. (Exercise: check that this still makes sense
when you have an ordered pair like (1, 1).)
Like ordered pairs, we can also ground strings in sets. Set-theoretically, a string
is a function from natural numbers (the positions in the string) to the elements
that make up the strings. As we know, a function is a set of ordered pairs and is
thus itself also grounded in set theory. (See above). Example: the string 3512JK
corresponds to {(1, 3), (2, 5), (3, 1), (4, 2), (5, J), (6, K)}.

Strings can be extended indefinitely. Say we have some string containing just the num-
ber 3, repeated many times. We can form a different string by just appending another
3 to this string. This new string can be extended in the same way, etc. This means that
there are infinitely many strings, even if we build strings just from a single element.

Strings can also have no elements. The empty string is written as ε. (Alternative notation
for the empty string include: Λ, λ and e).

1

http://matwbn.icm.edu.pl.proxy.library.uu.nl/ksiazki/fm/fm2/fm2122.pdf

Strings can be concatenated. If α and β are strings, then α _ β is the unique string such
that the elements in β follow the elements in α, preserving the order of the elements in
both strings. Concatenation is not commutative: for instance, 12 _ 21 6= 21 _ 12. But
concatenation is associative: 12 _ (21 _ 12) = (12 _ 21) _ 12 = 122112. The empty
string acts as a so-called identity element for concatenation, which means that for any
string ϕ, it holds that ε _ ϕ = ϕ _ ε = ϕ. (Compare: 0 is the identity element for
addition. For example, a+ 0 = 0 + a = a.)

As will become evident below, it is often handy to have a special notation for repetitions
of symbols in a string. For instance, we will sometimes write 13 for the string 111, and
so 1223344 is short for 1223334444. The set {1n|n > 0} is the set of all strings that
contain 1 or more 1s and nothing else.

Strings have huge importance for artificial intelligence. This is because many kinds of
knowledge can be stored and represented as a string. For instance, any text, whether it
is the content of a book, a web page or a governmental law, etc. is a string of letters,
digits, spaces and punctuation. Similarly, any computer program can be represented as
a string of letters, digits, spaces and punctuation. (Alternatively, a computer program
can be seen as a string of binary digits.) Also, any image can be seen as a string of pixel
values and a sound recording is a string of values that represent subsequent properties
of an audio signal. In general, when computers perform tasks, they perform tasks on
strings.

1.2 The Kleene star
Let X be some set. The set of all finite(!) strings made up only of elements in X is
written as X∗ (the Kleene closure of X). Here is a recursive definition:

Definition 1
Kleene closure: For any set A, the following holds:

• Base case: ε ∈ A∗

• Recursive step: If s ∈ A∗ and t ∈ A, then s _ t ∈ A∗

• Any element of A∗ is either ε or the result of a finite number of applications
of the recursive step

A similar, but ultimately more useful definition is the following:

Definition 2
Kleene closure: For any set A, A∗ =

⋃
{Ai | i ≥ 0 and i ∈ N}

Where:

• A0 = {ε}

• Ai = {σ _ a|σ ∈ Ai−1 and a ∈ A} for any i ∈ N such that i > 0

2

For example, {1}∗ is the set {ε, 1, 11, 111, 1111, . . .}. The set {1, 2}∗ corresponds to:

{ε, 1, 2, 11, 12, 21, 22, 111, 112, 121, . . .}

A special case is ∅∗. Let’s see which set this is by applying the above definition. First
of all, ε is in ∅∗, since the definition has it that ε is in any set that results from Kleene
closure. Note then that ∅∗ 6= ∅, since we have found a string that is included in the
Kleene closure of the empty set. According to the definition, further strings in ∅∗ are
now to be the result from concatenating a given string in that set with some element
in the original set. Since ∅ has no elements, we end up with no further strings, and so:
∅∗ = {ε}.
What is special about ∅∗ is that it is the only Kleene closure that is finite. In particular:

Theorem 1
For any non-empty finite or countably infinite set X , X∗ is countably infinite.

Proof
According to the second definition I gave for Kleene closure, X∗ is the infinite
union of a family {Xi|i ≥ 0}.
First case: X is finite. Take any set Xi that is the set of strings of length i that
can be built from the elements of X . For a set of cardinality c, the number of
strings of length n that you can build from this set equals cn. So, |Xi| = |X|i. This
means that each Xi is finite. We can thus enumerate all the strings, by just first
enumerating all the strings of length 0, then the finite number of strings of length
1, then the finite number of strings of length 2, etc. This yields a countably infinite
number of strings.
Second case: X is countably infinite. We know thatX∗ is the union of a countable
infinity of sets Xi. Each of these sets contains a countable number of strings. To
see this, first look at X0, which is obviously countable, since |X0| = 1. Next, X1

is countably infinite, since it contains all and only the strings of length 1 made
up of the countably infinite elements of X . All further sets Xi are the result of
concatenating one of the elements in X to one of the elements in Xi−1. We can
show that if Xi−1 is countably infinite, then so is Xi by creating a table where the
(countably infinite) columns represent elements of X (so, X = {x1, x2, x3, . . .})
and the (countably infinite) rows represent strings in Xi−1 (which we take to be
{s1, s2, s3 . . .}). We can enumerate the elements in this table using the enumera-
tion strategy depicted in the table below. (This is similar to howwe normally show
that there is a countably infinite number of rational numbers.) This shows thatXi

is countably infinite whenever Xi−1 is. Since X1 (and, in fact X0) is countable, so
are all sets Xi.

3

x1 x2 x3 x4 x5 . . .
s1 1 2 4 7 11
s1 3 5 8 12
s2 6 9 13
s3 10 14
s4 15
s5
...

Now we need to prove that a countably infinite union of countable infinite sets is
countably infinite. For ease of reference, let’s name the elements of the individual
subsets Xi that make up X∗ as follows: Xi = {si1, si2, si3, . . .}. As I’ve shown, all
these setsXi are countable and there are countably many of them. X∗ is the union
of all these sets, so the task is to show that we can enumerate all the elements of
all these sets Xi. We can refer to the individual elements in this enumeration as
sij and enumerate as follows.

j = 1 j = 2 j = 3 j = 4 j = 5 . . .
i = 1 1 2 4 7 11
i = 2 3 5 8 12
i = 3 6 9 13
i = 4 10 14
i = 5 15
i = 6
...

This means that we start with s11, then s12, then s21, s13, etc. This way, we will
reach each element in each setXi. Note that, we left outX0, but sinceX0 contains
a finite number of elements (namely just ε) we can just add its contents to the
enumeration.

1.3 Formal languages and decision problems
Formal languages are sets of strings. In particular, a formal language over X is a subset
of X∗. If L ⊆ X∗, then we can call X the alphabet of formal language L.

Consider for example the set A, the set consisting of all numerical digits and all capital
letters:

A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
∪

{A,B,C,D,E, F,G,H, I, J,K, L,M,N,O, P,Q,R, S, T, U, V,W,X, Y, Z}

The set A∗ is the set of all possible finite combinations of elements in this set. A formal

4

language is a particular subset of that set. For instance, Dutch postal codes consist of 4
numerical digits followed by 2 capital letters. So, the set of all Dutch postal codes is a
formal language over alphabetA. Similarly, a companymaymakemany kinds of models
of a certain product and label them with alphanumeric combinations. These labels, too,
would form a formal language over alphabet A.

These examples are rather trivial illustrations of what a formal language is. To un-
derstand the value of formal languages, it is important to understand the relation to
computer science and in particular to one kind of task that computers can perform. So-
called decision problems are problems that, given an input, ask for a binary decision to
be made. Here are some examples of decision problems:

• given an input n, output “yes” if n is prime and “no” otherwise

• given a sequence of letters, output “yes” if the sequence is a sentence of English and
“no” otherwise

• given a sentence in a logical language, output “yes” if the sentence is tautological
and “no” otherwise

• given a sequence of keystrokes, output “yes” if the sequence is an admissible pass-
word and “no” otherwise

Decision problems divide inputs up into two classes: one kind of input will result in
“yes”, the rest will result in “no”. Because of this, decision problems correspond to formal
languages. A languageL overΣ is a subset ofΣ∗ and, as such, this language represents a
choice between those strings in Σ∗ that are in L (the inputs resulting in “yes”) and those
strings in Σ∗ that are not in L (the inputs resulting in “no”). Consider, for example, the
final example of a decision problem, where the task is to decide whether the input is to be
permitted as a password for the user. This task amounts to saying yes to the admissible
combinations and no to the non-admissible ones. The set of admissible combinations can
be seen as a formal language and, so, the decision problem reduces to computing this
language. That is, performing this task is the same as performing the task of deciding
whether or not a string is in the language or not.

Formally, decision problems are related to characteristic functions:

Definition 3
Say we are interested in some set of elements U . Let A be a subset of U . The
characteristic function of A, fA : U → {0, 1} is defined as follows:

fA(x) =

{
1 whenever x ∈ A
0 otherwise

Conversely, the language Lf corresponding to some characteristic function f is
defined as:

Lf = {x | f(x) = 1 and x ∈ U}

5

We can think of a decision problem corresponding to both a language and a chararcter-
istic function. Computing the function f can be equated with deciding on membership
in Lf . While there are many tasks that do not correspond to solving a decision problem,
very often such tasks can be reduced to a decision problem. This is why decision prob-
lems are central to the scientific study of computation. To illustrate, consider the task of
simple arithmetic addition. This task is normally not represented as a decision problem,
but rather as a problem that requires finding the right answer: for instance, what is the
number that equals 1+4? However, being able to solve such problems entails that you
can solve a related decision problem, namely the problem of how to distinguish correct
answers from incorrect one. So, the task of addition as a decision problem amounts to
the language that contains strings like “1+4=5”, but not strings like “1+4=6”.

1.4 Computability
Say, we want to start make computers perform all sorts of tasks for which we humans
need intelligence. The naive way to go about this would just be to take one task at
a time and work on that task until we have satisfactory performance by a computer.
Without a theory of what it means for a computer to compute, however, we have no
way of knowing whether the things we are attempting are possible, or in what way the
individual tasks are related, or what the complexity is of the task we are looking at, etc.

Historically, formal languages are at the basis of theories of computability. This is the
notion used to reason about which tasks computers can perform. It turns out that some
functions are not computable. This doesn’t mean that we simply haven’t found of way
of getting a computer to perform the task corresponding to that function, or that we
didn’t manage to build a computer powerful enough to do so. Rather, it means that we
can prove that it is theoretically (and therefore also practically) impossible to compute
these functions.

We know this because we do have a theory of computation. Alan Turing (1912-1954)
developed an abstract model of computation, the Turing machine, and used it to reason
about decision problems. The most famous example of something Turing proved to be
impossible is the halting problem. The task in the halting problem is the following. We
would like an algorithm that takes as input some computer program code and an input
to feed to that computer program and the algorithm should decide for us whether the
program will halt or run indefinitely. Take for instance the following two mini pseudo
code programs:

def test(n): if (n>0) return 1 else return 0;

def oei(n): while (n>0) do n++;

It is easy to see that test(2) will halt. (It returns 1). Also, it is easy to see that oei(2)
will not halt. Since 2>0, it will keep on adding 1 to n indefinitely. (n++ is short for
assigning to n a value that is 1 higher than the current value.) The question is now
whether we can think of a function halt that looks roughly as follows:

6

def halt(f,n): return YES else return NO;

and which would output YES for halt(test,2), YES for halt(oei,0) and NO for
halt(oei,2).

Let us assume that halt is a computable function and then show that this runs into
a contradiction. If halt is computable, then we should also be able to compute the
following function:

def barber(f): if (halt(f,f)=YES) then oei(2) else return NO

This is a program that takes a function f as input and then does the following. It uses
halt to test whether f applied to itself halts. (That is, halt(f,f) gives YES if f(f)
halts and NO if f(f) does not halt.) If f(f) does halt, then barber runs oei(2). As
a consequence barber(f) will fail to halt whenever f(f) does halt. If f(f) does not
halt, then barber(f) will return NO and, as such, halt.

Now we imagine running the following: barber(barber). What would be the result
of running this? Well, barber plays the role of f here. So to see what happens, we need
to know what the outcome of halt(barber, barber) is. This outcome will be YES if
barber(barber) halts and NO if it does not. But now we get a contradiction. Let’s say
barber(barber) halts. Then halt(barber,barber) returns YES and barber will run
oei(2) indefinitely and, so, barber(barber) will not halt. Let’s then instead say that
barber(barber) does not halt. In that case halt(barber,barber) does not return
YES and as a result, barber will return NO. So, if barber(barber) does not halt, we
are forced to conclude that it does halt, namely by outputing NO. Whatever we do, we
run into a contradiction. Note that there is nothing odd about the barber function. It
contains a normal if-then-else condition which tests the output of a function, runs
another function in one case and returns something in the other case. The only reason
we could have to doubt whether we could define barber is the fact that it makes use
of halt. The contradictions we run into, therefore will have to do with our assumption
that halt exists and, as such, we can conclude that this is a non-computable function.

1.5 How many languages are there?
The previous section illustrate how formal languages can help us understand compu-
tation, in particular its limits and complexity. All the programs test, oei, halt and
barber are (or in the case of halt are intended to be) characteristic functions for de-
cision problems. So, if we want to understand computation, we need to understand as
much as possible about formal languages. A good start is to ask how many languages
there are.

For any alphabet Σ, the set of languages over Σ is any subset of Σ∗. So, the class of
languages over Σ, notation L(Σ), is simply ℘(Σ∗). The simplest case is Σ = ∅, for
which Σ∗ = {ε} and L(Σ) = {∅, {ε}}.
As we saw, for any non-empty countable Σ, Σ∗ is countably infinite. So, for any such

7

alphabet L(Σ) will be the powerset of a countably infinite set. As a consequence, there
are uncountably infinitely many languages of any non-empty alphabet. This follows
given the following theorem.

Theorem 2
If X is a countably infinite set, then ℘(X) is an uncountably infinite set.

Proof
Let’s say that ℘(X) is countable. In that case we should be able to enumerate all
its sets. The theorem will be proven by showing that this assumption is untenable.
Consider the following table. The columns of the table are the enumerated ele-
ments of X = {x1, x2, x3, . . .}. The rows are intended to be the enumerated ele-
ments of ℘(X). That is, each row represents a set as a vector, where a 1 indicates
that the element corresponding to the column is a member of that set and 0 indi-
cates that it is not.

x1 x2 x3 . . .
0 0 0 0
1 0 0 0
0 1 0 0
1 1 0 0
0 0 1 0
1 0 1 0
...

So, the first row in this table is the set that contains none of the elements in X .
That is, it’s ∅. The second row is the set containing just x1. The sixth represents
{x1, x3}. Etc. Because we are systematically going through all the elements of X
(the columns of the table), the rows should enumerate all the subsets ofX , if there
are countably many.
But now take the diagonal of the table, the values indicated in red. This yields a
vectorD = (0, 0, 0, 0, . . .). Say we take this vector and change all its values to the
opposite value, so we write a 0 where it said 1 and a 1 where it said 0. We then get
V = (1, 1, 1, 1, . . .). Since this is just a vector of 0s and 1s, it represents a subset of
X . If ℘(X) is countable, V should correspond to some row in the table. But notice
that it couldn’t possibly be a row. If it is a row, then the diagonal (the red line of
numbers) will cross that row at some column c. But the value of V at c has the
opposite value from the diagonal at c and, so, V cannot be in the table. It follows
that ℘(X) is not countable.

So, even if the alphabet is extremely simple, such as Σ = {1}, L(Σ) contains an un-
countably infinite set of languages. In what follows we will try and understand certain
interesting subclasses of this uncountable infinity, some of which are countable. Before
we do so, we turn from formal languages to natural ones. In particular, we will have a

8

brief look at the role that infinity plays in natural languages.

1.6 Formal versus natural language
In some ways, a natural language could not be more different from a formal one. Natural
languages are natural in the sense that they emerged in the natural world, through hu-
man interaction, without any premeditated design choices. It is worthwile elaborating
on the notion of a natural language a bit, because despite this huge opposition between
the naturalness of natural languages and the artificial nature of formal languages, both
natural and formal languages share some important features.

First, however, here is one particular way in which the natural character of natural
language manifests itself. We have all acquired at least one natural language. In fact,
worldwide most humans grow up acquiring multiple languages as their native language.
With acquire I don’t mean that you learn the language at school. Rather, it means that
you learn to use your language(s) through interaction with other speakers of that lan-
guage like your family, the children you play with, your neighbours, etc. There is no
explicit instruction involved. Nobody actively teaches you the meaning of words, or
how to pronounce them, or how to string them together into a sentence. Your language
ability simply emerges as a result of interacting with other humans. At school, you
learn how to do certain things with your language, like how to write it down or how to
read and understand text, but you do not need school to acquire your general linguistic
abilities: by the time you start school at 4 or 5 years old, your native language is already
almost fully developed. You know words, you know how to pronounce them, how to
string them together into sentences. You recognise words when they are spoken. You
know what sentences mean when you hear them. You can draw inferences from them
and phrase these inferences in your language. Etc. Etc.

The ability to speak and understand your native language(s) is something quite remark-
able. The linguist and philosopher Noam Chomsky identifies this remarkability in the
fact that we have access to a body of knowledge of language of which we are not con-
sciously aware that we possess it. This knowledge is often captured by the term compe-
tence. This competence is not completely visible in our everyday use of language, but we
may access it through introspection. For instance, any native speaker of English will be
able to decide that (1) is not a sentence of that language. (Linguists mark ungrammatical
sentences with a “*”. Note that this is fully unrelated to the Kleene star.)

(1) *Sleep furiously green ideas colourless

This is just word soup, a seemingly random sequence of English words. It is very easy to
come to the judgment that this is not a sentence. You know how to make that judgment,
because you have knowledge of language. Nobody taught you that this sentence is
ungrammatical, it is just something that you have the ability to decide on, via your
language competence. What’s more, that same competence allows you to decide that
the following sentence is grammatical.

9

(2) Colourless green ideas sleep furiously.

The sentence in (2), a famous example due to Chomsky, clearly makes no sense whatso-
ever. But that does not seem to matter for your ability to judge it as grammatical: Every
speaker of English will judge (2) differently from (1). While neither makes sense, (2) is a
sentence, but (1) is not. This illustrates the robustness of our knowledge of language. At
the heart of our everyday linguistic functioning are abilities that we only become aware
of through introspection.

Crucially, there is an in principle infinite number of combinations of words for which
we are (in principle) able to decide whether they are grammatical or not. For instance,
we know that (2) remains grammatical when we add a prepositional phrase:

(3) Colourless green ideas sleep furiously in my head.

Or several prepositional phrases:

(4) Colourless green ideas sleep furiously in a dream in my head.

Or think of the following, perhaps clearer example:

(5) The cat stood on a table in a room in a castle on a hill in a country where people
wear hats with feathers from birds from a forrest near a lake …

Any speaker of English can and will decide that (5) is grammatical. There are obvious
practical reasons why natural language sentences are never infinite, but our introspec-
tion tells us that they seem to allow for infinitely repeating patterns. As such, our lin-
guistic competence is infinite. Crucially, we achieve this infinite potential through finite
means, given that our brains are finite.

This link with infinity highlights the commonality between natural and formal lan-
guages. Our knowledge of a natural language involves the decision problem that asks
to distinguish grammatical from ungrammatical sentences and, so, there is a formal lan-
guage that corresponds to that decision problem. What is more, we are interested in
understanding what finite computational means allow us humans to capture this infi-
nite formal language.

In the examples above, I associate knowledge of language with the ability of deciding
on the grammaticality of a sentence. But there are many different kinds of linguistic
knowledge. Parallel to the examples above, there is a similar case to be made that you
have knowledge of how individual words are built. If you are a speaker of English,
you will know that you can add the prefix “re” to some verbs, to get another verb. For
instance, “discover” becomes “rediscover”, “invent” becomes “reinvent” etc. Adding “-y”
or “-ion” to these turns the verb into a noun: “discovery”, “rediscovery”, “invention”,
“reinvention”. If you are a native speaker of English, you were never instructed that
this is how things work. This ability has simply emerged as part of your knowledge of

10

language.

In summary, our linguistic abilities are a good example of a set of human abilities that
involve deciding on membership in an infinite formal language. So, from the context of
artificial intelligence, it would make sense to understand what kind of formal languages
are part of our human linguistic competence. What is their complexity? How do they
relate to formal languages we know more generally from our theory of computation?
These are the kind of questions we will approach in what follows.

11

2 Finite state automata
How do we study decision problems and computability? Turing proposed to use ab-
stract machines. In particular, he proposed a mathematical model of computation that
we now call the Turing machine. A Turing Machine is a formal model that mimics an
imaginary machine that consists of a tape that is segmented into an infinite number of
cells, a head that can move along the tape and read the contents of a cell as well as write
content to a cell, and a mechanism that controls the actions of the machine based only
on what the head reads and the state the machine is in. We won’t really discuss Turing
Machines in these lecture notes. However, we will discuss simpler abstract models of
computation. We start with the finite state automaton (FSA). As we will see, the dif-
ference in complexity between a Turing Machine and an FSA has consequences for the
kind languages that can be computed. In fact, we will see that by studying models of
computation of differing complexity, we get insights about different classes of decision
problems.

The task of an FSA is to receive an input string and to decide on whether to accept
it or not. In other words, FSAs solve a particular decision problem for the input they
receive. Acceptance means that the string is a member of the language corresponding
to the decision problem the FSA is meant to solve. Not accepting a string means that
the string does not belong to the language. An FSA is an automaton that can be in one
of a finite number of possible states. At the moment the FSA receives input, it is in a
dedicated start state. Every FSA has one or more acceptance states. A string is accepted
whenever the FSA is in one such state when the input has been read completely.

A finite state automaton reads the input bit by bit. For each state the automaton can be
in, there is a specification of what to do when a certain symbol (or sometimes string of
symbols) is read. The possible actions are extremely limited, however. The only thing
an automaton can do is either remain in the same state or transition to a different state
before proceeding to read the next symbol.

FSAs are abstract models, but there are examples of actual machines that resemble finite
state automata. It is illustrative to start by looking at such a machine. Take, for instance,
a digital lock on the door of a safe. The lock has two states: locked or unlocked. When it
receives input, it is always in the locked state. It has a key pad that can record an input,
namely a string of key presses. There is a key for each numerical digit, as well as for the
symbols “!” and “#”. The user can type in a code and send the code by pressing “#”. If
the user makes a mistake, he or she can type “!” to start completely from scratch. Let’s
say the code is “0000”. We can now say that the unlocked state is an acceptance state
and the locked state is not. The task of the digital lock is to accept strings like 0000#,
9!0000#, 0000!9!0000#, etc. and to not accept strings like 01234#, 0000, 0000!#, 0000000#,
etc. That is, the safe unlocks only when a string of key presses occurs that correspond
to the sending of the “0000” code.

Working locks like this actually exist. However, irrespective of how such real locks

12

work, we can represent the task they perform as a formal language over alphabet Σ =
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, #, !}. The set of strings that unlock the safe is a subset ofΣ∗. We
can define a finite state automaton that computes this language in theway just described.
Below, we will give a precise formal definition of FSAs, which will make it possible
to define a particular automaton as a fully specified mathematical object. But before
we turn to these formal definitions, we will look at an intuitive way of representing
automata. It is often handy to represent models of computation graphically. For FSAs,
we do this in the following way:

• states are circles, with the name of the state written in the circle

• acceptance states are indicated by a double line

• arrows indicate transitions between states triggered by the reading of a symbol,
where we label the arrow with the responsible symbol

• the start state is indicated with an incoming arrow that is not connected to any
other state

Here is an example of an automaton for the digital lock I just described:

As you can see, the automaton has 7 states. One of these is the start state (s0) and one of
them is an acceptance state (a). The only way this FSA will get into the acceptance state
is by reading the symbol 0 four consecutive times, immediately followed by a “#”. Such

13

an input has the automaton transition from s0 to s1, s2, s3, s4 and finally a. Anything
else will either get the automaton into the state x or, if a ! is typed, back to the start
state. From x, the only way to get further is to go back to s0 by reading a “!”.

2.1 Formal definition
Graphic depictions of automata are handy because they will help you to visualize what
happens in an automaton given certain inputs. Any FSA, however, is first and foremost
a formal object. That is, the automaton sketched here can not just be given graphically,
it can also be defined in mathematical terms. To do so, let us formally define finite state
automata:

Definition 4
A finite state automaton is a 5-tuple 〈Σ, S, s, A,R〉, such that:

• Σ is a finite set

• S is a finite set

• s ∈ S

• A ⊆ S

• R ⊆ (S × Σ)× S

Let’s unpack this. Σ is the alphabet of the language that the automaton is to compute.
So, each input is a string in Σ∗. S is the set of states that make up the automaton and s
is its unique element that acts as the start state. A is that subset of S of accepting states.
Finally, R is where all the work happens. R is a relation between pairs of states and
strings (elements of S × Σ) and states. It is often handy to represent R as a table, the
transition table of the automaton, where the rows represent states, columns represent
symbols and cells represent to which state the machine should transition when a certain
symbol is read in a certain state.

To illustrate, here is a formal specification of the lock automaton that is graphically
depicted above.

〈{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, !, #}, {a, x, s0, s1, s2, s3, s4}, s0, {a}, R〉

where R is the relation given by the following table:

14

0 1 2 3 4 5 6 7 8 9 ! #
s0 s1 x x x x x x x x x s0 x
s1 s2 x x x x x x x x x s0 x
s2 s3 x x x x x x x x x s0 x
s3 s4 x x x x x x x x x s0 x
s4 x x x x x x x x x x s0 a
x x x x x x x x x x x s0 x
a a a a a a a a a a a a a

Say this automaton receives the input 0!0000#. The table shows the states it will go
through when reading this input. The automaton starts in s0 and reads 0. As the top
left-most cell says, this leads to a transition to s1. The next symbol is ! which from s1
leads back to s0. The rest of the string will lead the machine through s1, s2, s3, s4 and,
finally, a. Given that at the end of the string, the machine is in an acceptance state, the
string is accepted.

FSAs can be quite simple. Consider for instance the following:

〈{0, 1}, {s0, s1}, s0, {s0}, {((s0, 0), s0), ((s0, 1), s1), ((s1, 0), s1), ((s1, 1), s0)}〉

This automaton reads strings in {0, 1}∗. It accepts only those that contain an even num-
ber of 1s (irrespective of the number of 0s it contains). (It also accepts string that contain
no 1s, so I am assuming that 0 is even.) It does this by accepting any string it reads until
it encounters a 1, which triggers a transition to the non-acceptance state s1. From there,
the only way to get back into an acceptance state is by once more reading a 1. So, every
odd 1 that is read moves the machine into non-acceptance and only the next 1 moves it
back to acceptance.

2.2 Non-determinism
In an FSA 〈Σ, S, s, A,R〉 it is the transition table R that regulates what happens when
a particular symbol is encountered in a particular state. In the examples we have seen
so far R was such that it unambiguously determines what happens in each possible
situation. Such an automaton is called deterministic: given a string, there is a unique se-
quence of transitions that the automaton will go through. A nondeterministic finite state
automaton (NFSA) is a finite state automaton that does not provide a unique sequence
of transitions for each output. Here is a simple example of an NFSA.

a b

1 1

0

0

1

15

This is an automaton over alphabet {0, 1}. It is nondeterministic because whenever a “1”
is read in state a, there are two candidate transitions: either the automaton remains in
state a, or it transitions into b. To distinguish between deterministic and nondetermin-
istic automata, it is a good idea to have a closer look at the transition table component
of FSAs.

As I wrote above, the transition tableR is a relation, a subset of (S×Σ)×S. Recall first
of all that any subset Z of a Cartesian productX×Y is a relation. Next, recall that such
a relation Z is a function if and only if whenever both (x, y) ∈ Z and (x, y′) ∈ Z , then
y = y′. In other words, a function Z ⊂ X×Y is a relation whenever each element inX
is paired with at most 1 element in Y . The definition of a finite state automaton states
that the transition specification R is a relation. An FSA is deterministic, whenever this
transition relation is a function that maps pairs of states and symbols to states.

Definition 5
A deterministic finite state automaton is a 5-tuple 〈Σ, S, s, A,R〉 where

• Σ is a finite set

• S is a finite set

• s ∈ S

• A ⊆ S

• R : (S × Σ) → S

Nondetermistic automata can also be viewed as having a functional transition relation.
However, in a non-deterministicmachine, each state-symbol pair does not yield a unique
state to transition to, but rather a set of states. This means we can define NFSAs as
follows:

Definition 6
A nondeterministic finite state automaton is a 5-tuple 〈Σ, S, s, A,R〉 where

• Σ is a finite set

• S is a finite set

• s ∈ S

• A ⊆ S

• R : (S × (Σ ∪ {ε})) → ℘(S)

For example, the NFSA given above can be formally represented as

〈{0, 1}, {a, b}, a, {b}, {((a, 0), {a}), ((a, 1), {a, b}), ((b, 1), {b}), ((b, 0), {a})}〉

16

If we present a deterministic FSA with an input, it is easy to check whether the input
is accepted or not, since the transition function fully specifies what to do with the in-
put. (The next section formalises this.) Things are different for non-deterministic FSAs.
There will be inputs that present us with a choice at certain points in reading the string.
As such, we would need a strategy for navigating through such choices in order to be
able to decide whether a string is recognised by an NFSA. So, figuring out whether an
NFSA accepts a string or not is much harder than figuring out whether a deterministic
automaton accepts a string. Given this, you may wonder why we bother discussing NF-
SAs in the first place. Well, first of all, an NFSA tends to be much smaller in size than
a deterministic FSA that does the same thing. Second, there exist quite a few efficient
algorithms that help us determine whether a string is accepted by a non-deterministic
automaton or not. So, practically speaking, it is sometimes simply preferable to work
with NFSAs.

In terms of expressive power, it turns out that the choice between deterministic and non-
deterministic finite state automata is immaterial. For any language recognized by some
deterministic FSA, there exists a non-deterministic FSA recognizing that same language,
and vice versa.

Theorem 3
(i) Any non-deterministic FSA N is such that there exists a deterministic FSA D
such that L(N) = L(D). Conversely, (ii) for any deterministic FSAD, there exists
a non-deterministic FSA N , such that L(N) = L(D).

I will not provide the proof here, but hope to give you some intuition. Note first of all
that (ii) is somewhat trivial. In fact, given definition 6, any deterministic automaton
can be rewritten as a non-deterministic one simply by changing the transition function
R : (S × Σ) → S into a function R′ : (S × (Σ ∪ {ε})) → ℘(S). We can do this as
follows: R′ is the function such that for any pair (x, a) ∈ S×Σ: R′((x, a)) = {R(x, a)}.
So, the nondeterministic version of the deterministic automaton is the automaton that
maps each combination of a state and a string to the singleton set containing the state
the deterministic version maps that combination to.

Part (i) of the theorem is trickier and was first proved by Rabin and Scott in 1959. One
way to see that (i) is the case is the existence of reliable strategies to transform any
nondeterministic automaton into a (usually considerably larger) deterministic one. This
is outside the scope of the current course.

2.3 Acceptance
So far, we only have had an informal understanding of what happens when an automa-
ton receives an input. We know that input strings are read symbol by symbol and that
the transition function determines for each read symbol what to do, based on the state
the FSA is in. The input is accepted if and only if the automaton is in an acceptance state
after reading the final symbol. Here is a formal definition of acceptance.

17

https://ieeexplore.ieee.org/abstract/document/5392601

Definition 7
A finite state automaton M = 〈Σ, S, s, A,R〉 accepts an input string w1 . . . wn, if
and only if there exists a computation s0, s1, . . . , sn such that:

• for all 0 ≤ i ≤ n: si ∈ S.

• s0 = s

• sn ∈ A

• for all 1 ≤ i ≤ n: either si ∈ R((si−1, wi)) or R((si−1, wi)) = si

Notation: We write MB x whenever M accepts x and M 6 Bx whenever it does
not.

This says that a string gets accepted by an automaton whenever we can go through the
string, symbol by symbol (or if appropriate substring by substring), and for each symbol
we can find a transition in such a way that, if we start in the start state the machine
will transition to an acceptance state after reading the final symbol. The last line in this
definition is a bit complex. This is because I am assuming that M can be of two types.
Either it is deterministic, in which case R((si−1, wi)) will always point to at most one
value, or it is nondeterministic in which case it will map to a set of states.

Here’s an example. Consider the automaton

X = 〈{1}, {a, b, c, d}, a, {c}, RX = {((a, 1), b), ((b, 1), c), ((c, 1), d), ((d, 1), d)}〉

This automaton accepts only a single string, namely “11”. It rejects anything shorter or
longer in {1}∗. The string “11” is accepted because there is a computation abc such that
RX ((a, 1)) = b andRX ((b, 1)) = c. There is no other string that has a computation with
the required properties. For instance, the computation that goes with “111” is abcd, but
d 6∈ A and, so, the string is not accepted. Similarly, the string “1” is computed by “ab”.
Here, too, the final state, b, is not an acceptance state, so the string is not accepted.

We are now ready to finally connect finite state automata to formal languages. Given the
definition of acceptance that I defined above, this is very straightforward. The language
computed by an automaton is the set of strings that it accepts:

Definition 8
Let M be a finite state automaton. Its corresponding formal language is written
as L(M) and is defined as:

L(M) = {x | MB x}

18

2.4 Determinism
Recall that a relation f ⊆ A×B is a function whenever for each a ∈ A it is the case that
(a, x) ∈ f & (a, y) ∈ f ⇒ x = y. There exist relations that are functional in this sense,
but which do not provide an output for each input in the domain. These functions are
called partial functions: a function f : A → B is partial whenever there exists x ∈ A
such that there exists no y ∈ B such that (x, y) ∈ f . That is, for some x, f(x) will be
undefined. If f is a partial function, we often write f(x) ↓ for f(x) being defined and
f(x) ↑ for f is undefined.

The definition of a deterministic FSA states that the transition table needs to be a func-
tion R : (S×Σ) → S. It does not state, however, whether R need to be a total function
or whether it is partial. That is, we could define an automaton that fails to specificy
transitions for some configurations the automaton can encounter. Take, for example,
the following variation on X :

X ′ = 〈{1}, {a, b, c, d}, a, {c}, RX ′ = {((a, 1), b), ((b, 1), c), ((c, 1), d)}〉

X ′ differs from X only in that its transition function is not defined for (d, 1). It turns
out that this does not really matter so much for our definition of acceptance. Take for
instance string “1111”. We have both X 6 B1111 and X ′ 6 B1111. The reason for not
accepting the string, however, is different in both cases. For a string to be accepted by
an FSA, two things have to be the case: (A) there has to be a computation for the string;
(B) this computation needs to have certain properties (start in a starting state, end in an
acceptance state). In X , “1111” is not accepted because of (B): d is not an acceptance
state. In X ′, “1111” is not accepted because of (A), the lack of a computation.

We can thus distinguish two kinds of determinism:

Definition 9
A finite state automaton 〈Σ, S, s, A,R, 〉 is p-deterministic whenever:

• Σ is a finite set

• S is a finite set

• s ∈ S

• A ⊆ S

• R : (S × Σ) → S and R is a partial function

A finite state automaton is t-deterministic, when it is deterministic, but not p-
deterministic.

There is a simple procedure that can turn a p-deterministic automaton into a determin-
istic FSA with a total transition function.

19

Let A = 〈Σ, S, s, A,R〉 be p-deterministic. Let σ be a state such that σ 6∈ S. The t-
deterministic version of A is defined below. (Recall, that ↓ indicates that the function
applied to its arguments is defined and ↑ indicates that it is not defined.)

〈Σ, S ∪ {σ}, s, A,R′〉
where for any (x, y) ∈ (S ∪ {σ})× Σ:

R′(x, y) =

{
R((x, y)) if R((x, y)) ↓
σ if R((x, y)) ↑

Take for example the following p-deterministic automaton. (It’s p-deterministic since
there is no defined transition for reading 0 in state b).

a b

1 1
0

Assuming that the alphabet is {0, 1}, this is the automaton given by

〈{0, 1}, {a, b}, a, {b}, {((a, 0), a), ((a, 1), b), ((b, 1), 1)}〉

To make this automaton t-deterministic, we add a state x and make sure that cases that
are undefined trigger transition to x. So, the altered automaton is

〈{0, 1}, {a, b, x}, a, {b}, {((a, 0), a), ((a, 1), b), ((b, 1), b), ((b, 0), x), ((x, 0), x), ((x, 1), x)}〉

Graphically, this corresponds to:

a b

x

1 1
0

0

1

0

2.5 Finite state transducers
Amuch used computational metaphor used for finite state automata is that they involve
a control mechanism that sequentially reads input from a finite tape. The mechanism
keeps track of where on the tape the automaton is and what state the automaton is. In
this section, we move to an important variation on finite state automata, called finite
state transducers or FSTs. Sticking with the metaphor, an FST is like an FSA but with

20

two instead of one finite tape. The benefit of an FST is that we can think of the two tapes
as playing different roles. In particular, one could see one of the tapes as providing an
input and the other tape providing the output. Here is an example of a simple finite state
transducer:

s

0 : 1

1 : 0

In graphical depictions of FSTs like this one, we use the colon as a special symbol that
distinguishes the two tapes. We can for instance think of symbols to the left of “:” as
part of the input and symbols to the right as part of the output. As such, this FST reads
a string of arbitrary combinations of 1s and 0s and replaces it with string where every
occurrence of a 1 is replaced by a 0 and vice versa. So, this FST recognises input-output
pairs like 010001:101110 and 000:111 and does not accept pairs like 00:01 or 111:0000.

Formally, a finite state transducer is more complex than a finite state automaton. This
is because the FST distinguishes two (possibly distinct) alphabets, one for each side of
the colon. Furthermore, there are two transition functions, also for both strings under
consideration.

Definition 10
A finite state transducer is a 7-tuple 〈Σ1,Σ2, S, s, A,R1, R2〉 where

• Σ1 is a finite set

• Σ2 is a finite set

• S is a finite set

• s ∈ S

• A ⊆ S

• R1 : (S × Σ∗
1) → S

• R2 : (S × Σ∗
1) → Σ∗

2

The above simple FST is given as:

〈{0, 1}, {0, 1}, {s}, s, {s}, {((s, 1), s), ((s, 0), s)}, {((s, 1), 0), ((s, 0), 1)}〉

The input part of an FST accepts strings just like an FSA would. A string w1 . . . wn is
accepted if there exists a computation s0s1 . . . sn such that: (i) s0 is the start state, (ii) sn
is an acceptance state and (iii) for each 1 ≤ si ≤ n: R((si−1, wi)) = si. The following
definition extends acceptance to include the output string. (Here, we once more use “:”
as a special symbol to distinguish the input from the output).

21

Definition 11
A finite state transducer T = 〈Σ1,Σ2, S, s, A,R1, R2〉 accepts an input-output pair
w1 . . . wn : o1 . . . on if and only if there exists a computation s0, s1, . . . , sn such
that:

• for all 0 ≤ i ≤ n : si ∈ S

• s0 = s

• sn ∈ A

• for all 1 ≤ i ≤ n: R1((si−1, wi)) = si

• for all 1 ≤ i ≤ n: R2((si−1, wi)) = oi

Notation: We write T B x : y whenever T accepts x : y and T 6 Bx : y whenever
it does not.

Practically, FSTs are used to translate or manipulate input strings. That is, they are em-
ployed when we need produce an output string that is based on the input string. Note,
however, that the definition given here defines acceptance of both the input and the out-
put, rather than just defining acceptance of the input and calculating the corresponding
output. So, even though transducers can be seen as mapping an output to an input, they
can be defined in terms of a decision problem. The problem of knowing which output
goes with what input can be reduced to the problem of recognizing a set of input output
pairs. Put differently, while FSAs correspond to formal languages, i.e. sets of strings,
FSTs correspond to relations, sets of pairs of strings.

22

3 Regular languages
As we saw above, there are uncountably infinitely many languages, whenever the al-
phabet is non-empty. We can divide the set of languages up in interesting subclasses,
however. We start with so-called regular languages: the class of languages recognized
by finite state automata. To define such languages, we need the following operation:

Definition 12
Set concatenation: If L1 and L2 are two sets of strings, then L1 · L2 = {l1 _
l2|l1 ∈ L1 and l2 ∈ L2}.

For example {1, 2} · {1} = {11, 21}. Given this operation, we can provide a recursive
definition of regular languages.

Definition 13
The set of regular languages overΣ, notationRΣ, is recursively defined as follows:

• Base: ∅ ∈ RΣ, {ε} ∈ RΣ and for each σ ∈ Σ: {σ} ∈ RΣ.

• Recursive step: If L1 ∈ RΣ and L2 ∈ RΣ, then

– L1 · L2 ∈ RΣ,
– L1 ∪ L2 ∈ RΣ

– L∗
1 ∈ RΣ and L∗

2 ∈ RΣ

• Nothing else is in RΣ.

Take for example Σ = {0, 1}. The definition above now states that sets like {0} and
{1} are regular languages and so are their concatenations {01}, {10}, {00}, {11}. Also,
unions of these sets are regular, such as for instance {1, 01, 11} or {0, 00}. Concate-
nations of such sets are also regular again: {10, 100, 010, 0100, 110, 1100}. Given the
complexity of languages that one can build using just concatenation and union, you
may wonder what the Kleene closure recursive step adds to the definition in regular
languages. It matters in a small but important way. If we had used an alternative def-
inition, one that did not include Kleene closure as a recursive step, then the definition
would in fact describe an importantly different class of languages. Without Kleene, in
any regular language strings of length exceeding 1 would result from a finite number
of applications of the concatenation step. But that means that for any regular language,
there is an upper bound to the length of the strings it contains. As such, all regular
languages would be finite. The addition of the Kleene recursive step allows for infinite
regular languages.

Note that Σ∗ = {ε} ∪ Σ ∪ (Σ · Σ) ∪ (Σ · Σ · Σ) ∪ This in turn may make you
wonder why the definition includes concatenation as a recursive step. This is to include

23

finite languages as regular. Without this step, we would only have ∅ and the singleton
languages as finite regular languages.

3.1 Regular languages and finite state automata
Theorem 4
Theclass of languages for which there is some finite state automaton that computes
that language is exactly the class of regular languages.

I will not prove this theorem here, but I will sketch the proof for one part of the theorem,
which will hopefully make things more intuitive.

Theorem 5
For each regular languageL, there is a finite state automatonM such thatL(M) =
L.

Proof
Recall that there are three basic cases of regular languages and three possible re-
cursive steps. What we need to show is that all these cases can be handled by
FSAs.
Base case 1, the regular language ∅: Just take an FSA without an accepting state:
〈Σ, {s}, s, ∅, ∅〉.
Base case 2, the regular language {ε}: This is a minimal variation on base case 1:
〈Σ, {s}, s, {s}, ∅〉.
Base case 3, regular languages {σ} for σ ∈ Σ: 〈Σ, {s, t}, s, {t}, {((s, σ), t)}
Recursive steps: Say we have L(M1) = L1 and L(M2) = L2. According to
the definition of regular languages, whenever L1 and L2 is regular, then so is L1 ·
L2, L1 ∪ L2, L∗

1 and L∗
2. So, for the current proof we need to show that there

is an FSA M1·2 such that L(M1·2) = L1 · L2, there is an FSA M1∪2 such that
L(M1∪2) = L1 ∪ L2 and there is an FSA M1∗ such that L(M1∗) = L∗

1. The
following procedures will deliver these FSA. Let M1 = 〈Σ, S1, s1, A1, R1〉 and
M2 = 〈Σ, S2, s2, A2, R2〉.
Recursive step 1, concatenation: M1·2 = 〈Σ, S1 ∪ S2, s1, A2, R1 ∪ R2 ∪
{((a, ε), s2)|a ∈ A1}〉
Recursive step 2, union: M1∪2 = 〈Σ, S1 ∪ S2 ∪ {x}, x, A1 ∪ A2, R1 ∪ R2 ∪
{((x, ε), s1), ((x, ε), s2)}〉.
Recursive step 3, Kleene closure: M1∗ = 〈Σ, S1 ∪ {x}, x, A1 ∪ {x}, R1 ∪
{((a, ε), s1)|a ∈ A1} ∪ {((x, ε), s1)}〉

I illustrate recursive step 2 with an example. First consider X , the language over {0, 1}
that contains strings of arbitrary combinations of 1s and 0s as long as the number of 1s
is zero or a multiple of 3, and the language Y over {0, 1} which is similar except that all
strings are such that the number of 1s is zero or a multiple of 2. Here are two automata
that recognise these languages.

24

s0

s1

s2 t0 t1

1 1

0

00

1

1

0
1

0

Theunion of the two languages,Z = X∪Y , is the language that contains arbitrary com-
binations of 0s and 1s as long as the number of 1s is either zero, a multiple of 3 or a mul-
tiple of 2. So, Z contains strings like 00001010001 and 000100001 but not 0001010001011.
To build an automaton for Z we can use the recipe for recursive step 2 from the proof
idea above:

s0

s1

s2 t0 t1

x

1 1

0

00

1

1

0
1

0

ε
ε

3.2 Closure properties
We say that a set is closed under a certain operation whenever performing the operation
on members of the set results in another member of the set. For instance, the natural
numbers are closed under squaring. This is because whenever x ∈ N, then x2 is also in
N. The natural numbers are not closed under the square root operation. For instance,√
2 6∈ N.

Given the definition of regular languages, we already know that they are closed under
union, concatenation and Kleene star. It can be important to know of such closure prop-
erties. This is because it may help us understand relations between decision problems.
For instance, if we know that a certain problem can be seen as the concatenation of two
problems solvable by finite state automata, then we know we can solve this problem
using an FSA, too.

Beyond the three cases that follow directly from the definition of regular languages, this
class has further closure properties. Here, I only discuss one of them, namely the case of
complementation. Say that LΣ is some language over Σ. The complement of LΣ is set
of strings inΣ∗ that are not in L. So: LΣ =Σ∗\L. There is an easy procedure that allows

25

you to construct an FSA for the complement of a language on the basis of an automaton
for the original language.

Definition 14
Let M = 〈Σ, S, s, A,R〉 be t-deterministic. The FSA M is defined as:

M = 〈Σ, S, s, S \ A,R〉

Take, for example, the following FSA, which recognizes {0n×31m | n ≥ 0 and m is odd}.
(Note that 0 is a possible value for n, so the FSA also accepts string like 1 or 111).

s1

s2

s0

z

s3 s4

0 0

1
1

0
1

0

1

1

0

0

1

As per definition 14, we can take the complement of this FSA to recognize the language
that contains strings that are not a sequence of some multiple of three 0s followed by
an odd number of 1s. This complement language contains strings like 01 and 0011, but
also strings like 10100. The complement automaton is simply the following:

s1

s2

s0

z

s3 s4

0 0

1
1

0
1

0

1

1

0

0

1

This FSA just accepts anything as long as it doesn’t finish reading the input in s3, because
that would result in a string that belongs to the original language. It is important that
complementation takes place with a t-deterministic automaton. Consider the following
p-deterministic FSA.

26

s1

s2

s0 s3 s4

0 0

0
1

1

1

This FSA also corresponds to {0n×31m | n ≥ 0 and m is odd}. For instance, it fails to ac-
cept 000001 because there is no computation for that string that results in an acceptance
state. But if we were take the complement of this FSA, we’d get the following:

s1

s2

s0 s3 s4

0 0

0
1

1

1

Crucially, this is not the complement of {0n×31m | n ≥ 0 and m is odd}. For instance,
it fails to accept strings like 01 or 1000.

Theorem 6
Whenever M is t-deterministic, then L(M) = L(M).

Proof
Say that M = 〈Σ, S, s0, A,R〉. The assumption is that M is t-deterministic. That
means that for any stringw1 . . . wn inΣ∗ there is a computation s0 . . . sn, such that
for any wi, ((si−1, wi), si) ∈ R. There are two kinds of computations of this kind:
if sn ∈ A, then this is the computation of an accepted string and if sn 6∈ A, then it is
the computation of a string that is not accepted. But this immediately means that
we can swap accepted and non-accepted strings by just swapping acceptance states
with states that are not acceptance. It follows from the definition of acceptance and
L() that L(M) = L(M).

Now everything is in place to prove that regular languages are closed under comple-
mentation.

Theorem 7
If LΣ is a regular language over Σ, then so is LΣ.

Proof
Assume that L is regular. Since L is regular, there exists a t-deterministic FSA M
such that L(M) = L. Given theorem 6, we know that L(M) = L. And so there
exists an FSA corresponding to L, namelyM. Given theorem 4, this means that L
must be regular.

27

3.3 Non-regularity
We’ve defined regular languages and we have seen that these are exactly the languages
for which we can build a finite state automaton. The original abstract model of com-
puting put forward by Alan Turing was a model that is quite a bit more complex than
the FSAs we’ve discussed so far. One crucial difference (but by not means the only dif-
ference) is that a Turing Machine can not only read the input string, it can also write
symbols and revisit what it has written down at a later stage in the computation. That
is, a Turing Machine has a memory mechanism, while a finite state automaton does not.
This difference matters. Turing Machines can compute a proper superset of the formal
languages that FSAs can. Here is a classical example of a language that is not regular,
a language for which there is no finite state automaton.

{0n1n | n ≥ 1}

This language is the infinite sets of sequences of 0s and 1s, where all the 1s follow all
the 0s and there are exactly as many 0s and 1s. In the next section, I discuss a proof
of why this is not a regular language, but before we turn to this proof, it is important
to understand the intuition behind why there can’t be an FSA that corresponds to this
language. To do this let’s just try and find a corresponding FSA and see the trouble such
an attempt meets on the way. So, we are looking for finite state automaton A such that
L(A) = {0n1n | n ≥ 1}.
Take an arbitrary string in the language, say 00001111. SayA accepts this string, and say
that part of the acceptance is a computation s0s1s1s1s1 corresponding to 0000. What
would the rest of the computation look like? Well, after reading the four 0s, A will read
the first 1 and it would then go to a new state s2. For the language {0n1n | n ≥ 1}, it is
crucial however that the automaton will now somehow “remember” that it has read four
0s. But there is no way it can remember this. As soon as the machine transitions from
s1 to s2 all information about what it has encountered so far is gone. For instance, the
following FSA is not theAwe are looking for. It corresponds to {0n1m | n ≥ 1 and m ≥
1}, which is a proper superset of {0n1n | n ≥ 1}. That is, it does not just include strings
like 0011 and 00001111, but also strings like 001111 and 000011.

s0 s1 s2 11

0

0

The only way an FSA can have some sort of memory is to have a different state for each
number of 0s that has been read. For example:

28

t0 t1 t2 t3

f1 x2 x3

f2 y3

f3

0 0 0

1 1 1

1 1

1

This is an automaton that accepts 01, 0011, and 000111, but not strings like 011 or 001.
Every time it is in a state where n 0s have been read, there will be n consecutive states
that can be transitioned to by reading a 1. Only the last of these is an acceptance state.
This trick works for {01, 0011, 000111} and we could naturally extend the automaton
to handle similar strings. Unfortunately, we cannot use it for {0n1n | n ≥ 1}. This is
because if we want to extent this automaton to accept the countably infinite number of
string in that language we will need an infinite number of states. For starters, we will
need a countably infinite number of states like t0, t1, t2, t3, etc. Of course if we included
such an infinite number of states, we would no longer have a finite state automaton.

The fact that not all languages are regular shows that the finite state automaton is a
limited model of computation. It also shows that there is a distinguished class of deci-
sion problems, namely those corresponding to regular languages, for which this limited
model suffices. That is, it can be important to knowwhether a certain problem is regular
or not, because this will tell us the complexity of the computational mechanism we need
to use.

As we will see, there are multiple classes of formal languages, which form a hierarchy of
increasing complexity. For now, however, we stick with the distinction between those
languages that are and those that are not regular.

Proving that a language is regular is relatively easy. All you need to do is provide a finite
state automaton for the language. For instance, say I want to prove that {0n1m | n ≥
1 and m ≥ 1} is regular. I could present you with the (p-deterministic) automaton

R = 〈{0, 1}, {s0, s1, s2}, s0, {s2}, {((s0, 0), s1), ((s1, 0), s1), ((s1, 1), s2), ((s2, 1), s2)}

which looks like this:

29

s0 s1 s2
0

0

1

1

If I can now show that L(R) = {0n1m | n ≥ 1 and m ≥ 1}, then this is proof that this
language is regular. But this is easy to prove. All the computations that lead to accepted
strings are of the form s0 followed by at least one s1 and at least one s2. This is only
possible if the string has at least one 0, followed by at least one 1.

We now turn to the formal proof of non-regularity.

3.4 The pumping lemma for regular languages
Above, we saw an important difference between languages like {01, 0011, 000111} and
{0n1n | n ≥ 1}. The former is regular (witness the FSA we gave for it), while the latter
is not. The upshot is that as long as we are not dealing with an infinite language, FSAs
suffice.

Theorem 8
Any finite language is regular.

Proof
Let L be some finite set of strings over alphabet Σ. To prove that L is regular, we
need to provide a finite state automaton for it. Let L = {x1, . . . xn}. So, there are
n strings in L. Let’s say that each string xi ∈ L can be written as xi,1 . . . xi,k.
For the whole language to be accepted, for every string xi, we’ll need a com-
putation s0 . . . sk, with s0 the start state, sk an accepting state and a transition
((st−1, xi,t−1), st) for every 1 ≤ t ≤ k. This means we can provide the FSA by
just taking the set of all these transitions and the set of all corresponding states:
M = 〈Σ, S, s0, A,R〉 such that:

• S = {s0} ∪ {s1,w | 1 ≤ w ≤ |x1|} ∪ . . . ∪ {sn,w | 1 ≤ w ≤ |xn|}

• A = {sv,w | xv ∈ L and w = |xv|}

• R = {((sv,w−1, xv,w−1), sv,w) | 1 ≤ v ≤ n and 1 ≤ w ≤ |xv|}

Since L(M) = L it follows that L is regular. Since we took an arbitrary finite
language, it follows that every finite language is regular.

For example, take the {01, 0011, 000111} language. Here, the n in the proof is 3 and we
have x1 = 01, x2 = 0011 and x3 = 000111. (Any other order would do equally well.)
These strings are 2, 4 and 6 symbols long. This means we need 2+4+6+1=13 states, one
for each symbol plus a start state. If we follow the procedure in the proof, we end up
with the following FSA.

30

s0 s1,1 s1,2

s2,1 s2,2 s2,3 s2,4

s3,1 s3,2 s3,3 s3,4 s3,5 s3,6

0 1

0

0 0 1 1

0 0 1 1 1

Note that there are of course simpler finite state automata for this language. (I gave one
earlier). But that is besides the point. By following this procedure we are guaranteed to
provide an FSA for each finite language, thus proving that finite languages are regular.
Providing a simpler FSA would only reiterate that point.

The above proof exploits the fact that finite state automata can include any finite number
of states. Given that an FSA has a finite number of states, this means that FSAs for
infinite languages can accept strings that are longer than the number of states in the
FSA. This in turn means that the computation of some accepted string in an infinite
language must involve the same state more than once. (This is sometimes referred to
as the pigeon hole principle. If you have m pigeons in n < m pigeon holes, then some
pigeon holes will have to contain multiple pigeons.) In other words, FSAs for infinite
languages must contain a loop.

It turns out that loops in finite state automata have a very particular feature. Say that
we have some FSA and there is a computation of string x which starts in the start state
and ends in some state si. Let’s say that when the FSA subsequently reads string y, it
enters a loop. That is, the first symbol of y triggers a transition to sj and the sequence of
transitions brought about by the rest of the symbols in y ends once more in sj . Finally,
let’s assume that from there the FSA can read string z, transitioning from sj to sk and
subsequently to some states ending in some accepting state sf . So, the FSA accepts the
string xyz and the computation that goes with this string is s0 . . . sisj . . . sjsk . . . sf .
Because this acceptance has a loop along its path of computation, it follows that there
will be similar accepting computations when the loop is traversed less than one or more
than one times. In other words, this FSA will also accept xz, xyyz, xyyyz, etc. In fact
the set {xynz | n ≥ 0}will be a subset of the language corresponding to this automaton.
This is the guiding intuition behind the pumping lemma.

The pumping lemma for regular languages
If L is a regular language, then there is a number p ∈ N, the so-called pumping
length, such that every string σ ∈ L such that |σ| ≥ p can be divided into σ = xyz
where: (i) for each n ≥ 0: xynz ∈ L; (ii) |y| > 0 and (iii) |xy| ≤ p.

31

Proof
We know that L is regular, so there exists an automatonM such that L(M) = L.
Let us assume that M has p states. Now take σ ∈ L such that σ = x1 . . . xn
with n ≥ p. Since σ is accepted, we have a computation c1c2 . . . cpcp+1 . . . cncn+1

such that ((ci, xi), ci+1) is a transition in M, c1 is the start state and cn+1 is an
acceptance state. Since n ≥ p, there are more states in this computation than
there are states in M. This means that there has to be some v, w such that v 6= w
and cv = cw. Let’s call this state s. This means that the computation will look like
c1c2 . . . cv−1s . . . scw+1 . . . cncn+1. Let’s call the string computed by c1c2 . . . cv−1s,
x, the string computed by scw+1 . . . cncn+1, z and the string computed by s . . . s, y.
By assumption, xyz ∈ L. Because s . . . s is a loop, it follows that xynz ∈ L for any
n ≥ 0. Given that v 6= w in the original computation of σ, it follows that |y| > 0.
Because there are only p unique states, there repeated part of the string (y) must
occur within the first p symbols of the string. In other words, it follows from this
that |xy| ≤ p.

The pumping lemma for regular language is an incredibly useful lemma, for it provides
us with a method of proof for non-regularity. This may seem unintuitive, but notice
that the pumping lemma give us a property that all regular languages have. This is not
to say that all non-regular languages lack this property. In other words, if you find a
language with the pumping property described by the lemma, this does not mean that
this language is regular. However, if you find a language that does not have the property,
then you know it can’t be regular, since all regular languages have the property.

A mnenomic for applying the pumping lemma
At the risk of being pedantic, the following dumbs the structure of how to apply
the pumping lemma down to something extremely simple. Consider the following
theorem.

The tail lemma
Every cow has a tail

Let’s say I have the task of finding cows. My problem is that I am very bad at
identifying animals. I encounter three: a cat, a cow and a frog. The tail lemma
won’t help me with the cat or a cow. All I know is that every cow has a tail. Both
these animals could therefore be a cow, but they could also both be other animals
that have a tail (as the cat indeed is). The lemma does help me with the frog. The
frog does not have a tail and therefore cannot be a cow.

Here is an example of the pumping lemma in action. Consider the standard example of a
non-regular language L = {0n1n | n ≥ 1}. Assume that L is regular. Then the pumping
lemma should hold for L. So, there should be some p such that any string that is at least
p can be “pumped” in the way described by the lemma. Take an arbitrary string that
is long enough: 0p1p (length 2 × p). We should now be able to divide this string into

32

x, y and z such that |xy| ≤ p, |y| > 0. Since |xy| ≤ p, it follows that both x and y
only contain 0s. In particular y = 0k for 1 ≤ k ≤ p. Given the pumping lemma, it now
follows that xylz ∈ L. This runs into a contradiction. Take for instance, xy2z. We know
that xyz contains p 0s and p 1s. We also know that y contains k 0s and k > 0. It follows
that xy2z contains p + k 0s and p 1s. Since p + k > p, it follows that xy2z 6∈ L. This
contradicts the assumption that L was a language for which the pumping lemma holds.
It follows that L is not regular.

33

4 Formal grammars
The models of computation we looked at so far were automata, abstract machines that
involve state transitions on the basis of an input that is being read. In this section, we
move to another model of computation, namely a formal grammar. Later we will see
how grammars are related to automata. In particular, we will discuss different kinds of
formal grammar and compare them to various kinds of automata beyond the class of
finite state automata that we discussed so far.

4.1 Formal definition
Definition 15
A formal grammar is a 4-tuple 〈Σ, N, S, P 〉 such that:

• Σ is a finite set of terminal symbols, i.e. the alphabet of the language corre-
sponding to the grammar

• N is a finite set of non-terminal symbols

• S ∈ N is the so-called start symbol

• P ⊆ (N ∪ Σ)∗ × (N ∪ Σ)∗ is a finite set of productions (or production rules)

It is common to use capital letters for non-terminals and lower-case letters for terminals.
Here is an example of a formal grammar:

X = 〈{1}, {S}, S, {(S, 1), (S, 1S)}〉

This grammar has one non-terminal symbol S and two productions. We often write
production as rules, using →. For instance, the productions of the above grammar look
like:

S → 1
S → 1S

When linguists are not concerned with matters of formal language theory, they often
represent a formal grammar by just giving the production rules. For instance, you may
encounter a “grammar” like the following:

34

Y =



NP → N (PP)
DP → D NP
PP → P DP
N → box | table | diamond | room | house | sister | thief
P → in | on | of
D → the | a

Note first of all that from these production rules alone, you will be unable to identify
what grammar is meant. This is because there is no indication of what the start node
is. The language corresponding to the intended grammar will be quite different when
“PP” is the start node compared to when “DP” is the start symbol. In that sense, an
informal grammatical representation like this corresponds to a set of grammars and a
set of languages, one for each choice of the start symbol (DP, NP, PP). For instance, this
grammar derives DPs like the following:

(6) a. a diamond
b. the table of the thief
c. a diamond in the box on a table in a room in the house of the sister of the

thief of the diamond in the box

and PPs like:

(7) a. in a diamond
b. of the table of the thief
c. of a diamond in the box on a table in a room in the house of the sister of the

thief of the diamond in the box

The production rules above illustrate some common notational conventions that are
handy to know. First of all, one rule indicates the optionality of certain symbols by
putting them in brackets. That is,

NP → N (PP)

is short for two rules, namely:
NP → N
NP → N PP
A different form of disjunction for production rules is the pipe symbol “|”. This indicates
alternative right-hand sides for the same left-hand side. So:

D → the | a

is short for:
D → the
D → a

35

4.2 Derivation
Derivation is the formal notion that concerns how a certain string is recognized/pro-
duced by a grammar. This notion is comparable to the notion of computation that I
introduced for finite state automata. It is defined as follows:

Definition 16
Let G = 〈Σ, N, S, P 〉 and let α, β, γ, δ ∈ (N ∪ Σ)∗. If (α, β) ∈ P then we say
that δαγ directly derives δβγ, which we write as: δαγ ⇒G δβγ. We say that α
derives β, which we write α ⇒∗ β, whenever:

• α ⇒G β (α directly derives β), or

• there exists a non-empty sequence x1 . . . xn such that α ⇒G x1 ⇒G xn ⇒G
. . . ⇒G xn ⇒G β

I will drop the subscript indicating the grammar if it is clear for which grammar
derivation is being discussed.

For example, the grammar X = 〈{1}, {S}, S, {(S, 1), (S, 1S)}〉 we gave above yields
S ⇒∗ 1, since S ⇒ 1, since (S, 1) is in the productions of this grammar. (That is, here
we can take δ = γ = ε.) We also have S ⇒∗ 111, since S ⇒ 1S ⇒ 11S ⇒ 111. There
are three direct derivation in this indirect derivation. First, S ⇒ 1S because S → 1S is
a production rule. (I.e. δ = γ = ε). Second, 1S ⇒ 11S because (S, 1S) is a production
rule. (Here, α = S, β = 1S, δ = 1, γ = ε.) Finally, 11S ⇒ 111 because (S, 1) is a
production rule. (So we take α = S, β = 1, δ = 11 and γ is empty.)

Another example: if we assume that the startsymbol of grammar Y is DP, then it has a
derivation for the string “the box on the table”, which goes as follows.

DP ⇒ D NP ⇒ the NP ⇒ the N PP ⇒ the box PP ⇒ the box P DP ⇒ the box
on DP⇒ the box on D NP⇒ the box on the NP⇒ the box on the N⇒ the box
on the table

Note that in this derivation, I consistently replace the left-most non-terminal symbol in
accordance to some production rule. Such a derivation is called the left-most derivation.
The right-most derivation consistently replaces the right-most non-terminal and looks
like this:

DP ⇒ D NP ⇒ D N PP ⇒ D N P DP ⇒ D N P D NP ⇒ D N P D N ⇒ D N P D
table ⇒ D N P the table ⇒ D N on the table ⇒ D box on the table ⇒ the box
on the table

There are also derivations that are neither left-most nor right-most. For example:

36

DP ⇒ D NP ⇒ D N PP ⇒ the N PP ⇒ the N P DP ⇒ the box P DP ⇒ the box
P D NP ⇒ the box P D N ⇒ the box on D N ⇒ the box on the N ⇒ the box on
the table

It is important to note that for all these derivations, there is a sense in which they came
about as bymagic. We just happened to consistently pick the right production rule to get
to the string we were after. For instance, say that we attempt a right-most derivation
starting, as before, with the step DP ⇒ D NP. Given that our focus is on the right-
most non-terminal, we need to find a production rule for NP. Let’s say we pick NP⇒ N.
Then our derivation becomes DP ⇒ D NP ⇒ D N. Now, we have no way to continue
the derivation to derive the string “the box on the table”, since both D and N are only
rewritable as terminal symbols.

What matters for now is simply whether or not there exists a derivation for a certain
string. If one exists, then the string is part of the language corresponding to the gram-
mar. Actually finding such a derivation (that is, proving that the string is in the language)
is a different and practical matter to which we turn later.

Definition 17
The language corresponding to a grammar G = 〈Σ, N, S, P 〉, written L(G) is de-
fined as follows:

L(G) = {σ | S ⇒∗
G σ}

4.3 Parse trees and ambiguity
To visualise a derivation from a grammar, it is sometimes handy to draw a correspond-
ing tree structure, where the leaves of the tree (read from left to right) make up the
righthand side of the derivation and the root of the tree the lefthand side. For instance,
the following tree represents a derivation of S ⇒ 111.

S

S

S

1

1

1

These structures are called parse trees. They are not just the graphic representation of
the derivation of a string. They are formal object in their own right:

Definition 18
A parse tree is a pair (P,C), where

• P is a symbol, the parent node, and

37

• C is an ordered sequence of symbols and parse trees, the children

Nodes that are not trees are called leaves.

The following procedure produces parse trees from derivations. Whenever we have a di-
rect derivationN ⇒ x1 . . . xn, we build the parse tree (N, (x1, . . . , xn)). The next step in
the derivation could now rewritexi. For instancex1 . . . xi . . . xn ⇒ x1 . . . yk . . . yk . . . xn.
We adjust the parse tree accordingly by replacing xi by the tree (xi, (y1, . . . , yk)), yield-
ing the tree (N, (x1, . . . , (xi, (y1, . . . , yk)), . . . , xn)). Once we have done this for every
part of the derivation we have the parse tree corresponding to that derivation.

For instance, the tree just above definition 18 corresponds to the derivation S ⇒ 1S →
11S → 111 for grammar X = 〈{1}, {S}, S, {(S, 1), (S, 1S)}〉. I illustrate this using
the following table, where the left-hand side shows the unfolding of the tree, step by
step in the derivation and the right-hand side the production rule that was used in the
corresponding derivation step.

(S, (1, S)) S → 1S
(S, (1, (S, (1, S)))) S → 1S
(S, (1, (S, (1, (S, 1))))) S → 1

Note that a string will have multiple derivations in a grammar. For starters, for each
left-most derivation there will be a right-most derivation. However, this does not have
any impact on the parse tree. I illustrate this with Y , repeated here, and the DP “the box
on the table”:

Y =



NP → N (PP)
DP → D NP
PP → P DP
N → box | table | diamond | room | house | sister | thief
P → in | on | of
D → the | a

left-most derivation of “the box on the table”
(DP, (D,NP)) DP → D NP
(DP, ((D, the), NP)) D → the
(DP, ((D, the), (NP, (N,PP)))) NP → N PP
(DP, ((D, the), (NP, ((N, box), PP)))) N → box
(DP, ((D, the), (NP, ((N, box), (PP, (PDP)))))) PP → P DP
(DP, ((D, the), (NP, ((N, box), (PP, ((P, on), DP)))))) P → on
(DP, ((D, the), (NP, ((N, box), (PP, ((P, on), (DP, (DNP)))))))) DP → D NP
(DP, ((D, the), (NP, ((N, box), (PP, ((P, on), (DP, ((D, the), NP)))))))) D → the
(DP, ((D, the), (NP, ((N, box), (PP, ((P, on), (DP, ((D, the), (NP,N))))))))) NP → N
(DP, ((D, the), (NP, ((N, box), (PP, ((P, on), (DP, ((D, the), (NP, (N, table)))))))))) N → table

The right-most derivation of that same string looks as follows, and results in the same
tree:

38

right-most derivation of “the box on the table”
(DP, (D,NP)) DP → D NP
(DP, (D, (NP, (N,PP)))) NP → N PP
(DP, (D, (NP, (N, (PP, (P,DP)))))) PP → P DP
(DP, (D, (NP, (N, (PP, (P, (DP, (D,NP)))))))) DP → D NP
(DP, (D, (NP, (N, (PP, (P, (DP, (D, (NP,N))))))))) NP → N
(DP, (D, (NP, (N, (PP, (P, (DP, (D, (NP, (N, table)))))))))) N → table
(DP, (D, (NP, (N, (PP, (P, (DP, ((D, the), (NP, (N, table)))))))))) D → the
(DP, (D, (NP, (N, (PP, ((P, on), (DP, ((D, the), (NP, (N, table)))))))))) P → on
(DP, (D, (NP, ((N, box), (PP, ((P, on), (DP, ((D, the), (NP, (N, table)))))))))) N → box
(DP, ((D, the), (NP, ((N, box), (PP, ((P, on), (DP, ((D, the), (NP, (N, table)))))))))) D → the

These tables illustrate that left- or right-most derivation is immaterial to the resulting
parse tree. We can capture this intuition in the notion of derivation-similarity.

Definition 19
The trace of a derivation is the sequence of production rules (elements in used by
the derivation. (This is the right column in the tables above).

Two derivations are similar if their derivation traces are of equal length and con-
tain the same productions. (That is, they are simply a reordering of one-another).

The left- and right-most derivation of “the box on the table” above are derivation-similar.
They involve the same steps, yet in a different order. Try and convince yourself that each
left-most derivation will have a derivation-similar right-most derivation. Note as well
that whenever two derivations are similar, they will have the same parse tree.

Given all this, we can turn things around. A parse tree is a representation of a class
of derivations that are similar. Technically, a parse tree corresponds to an equivalence
class of derivations. This is because derivation-similarity is an equivalence relation (it is
transitive, reflexive and symmetric). As such, given a grammar and given some string
we can construct the set of derivations of the string in that grammar that are similar to
one-another. This is an equivalence class. For that class of derivations, there is exactly
one parse tree.

Importantly, two derivations of the same string (and given the same grammar) are not
always similar. Sometimes, the same string may have multiple parse trees. In that case,
the grammar is called ambiguous.

Here is an example of a grammar that is ambiguous:

〈{0, 1}, {S,A}, S, {(S, 0), (S, 0S), (S,A), (S, 0A), (A, 1)}〉

This grammar derives strings like 0, 00, 001, 00001, etc. Ambiguity arises when the string
contains a 1. For instance, 001 can be derived in two ways: S ⇒ 0S ⇒ 00S ⇒ 00A ⇒
001 or S ⇒ 0S ⇒ 00A ⇒ 001. The corresponding parse trees are:

39

S

S

S

A

1

0

0 S

S

A

1

0

0

These trees are constructed from the derivations as illustrated in the tables below. (As
before, the tables show each step in the derivation. On the left of the table the tree
is unfolding step by step; on the right I indicate the production that was used at the
corresponding step in the derivation.)

S ⇒ 0S ⇒ 00S ⇒ 00A ⇒ 001
(S, (0, S)) S → 0S
(S, (0, (S, (0, S)))) S → 0S
(S, (0, (S, (0, (S,A))))) S → A
(S, (0, (S, (0, (S, (A, 1)))))) A → 1

S ⇒ 0S ⇒ 00A ⇒ 001
(S, (0, S)) S → 0S
(S, (0, (S, (0, A)))) S → 0A
(S, (0, (S, (0, (A, 1))))) A → 1

From the formal perspective we developed here, ambiguity is the notion that a grammar
has two distinct parse trees for the same string. Given the link between parse trees and
derivation similarity (a parse tree corresponds to the equivalence class of derivation-
similar derivations), we can also see ambiguity as the phenomenon within a grammar
where the same string has two distinct left-most derivations. Or, similarly, a grammar
is ambiguous whenever there’s a string that has two distinct right-most derivations.

4.4 Grammar equivalence
Consider the following two grammars. The left one is a repeat of the grammar we saw
above. The grammar on the right is only slightly different.
NP → N (PP)
DP → D NP
PP → P DP
N → box | table | diamond | room

| house | sister | thief
P → in | on | of
D → the | a

DP → DP PP
DP → D N
PP → P DP
N → box | table | diamond | room

| house | sister | thief
P → in | on | of
D → the | a

Let us assume that the start symbol for both grammars is DP. Both grammars then derive
the same language. This language contains strings like “a diamond”, “the room of the
sister”, “the sister of the sister of the thief”, etc. Note, however, that the grammars differ
in how these strings are derived. In particular, the grammars differ in the parse trees that
go with strings. Take, “the box on the table”. Here are the two parse trees corresponding
to the derivations of this string in the two grammars.

40

DP

NP

PP

DP

NP

N

table

D

the

P

on

N

box

D

the DP

PP

DP

N

table

D

the

P

on

DP

N

box

D

the

This shows that even though the two grammars are equivalent in the sense that they
correspond to the same language, they differ in the structures they assign to these strings.

Definition 20
Let G1 and G2 be two formal grammars. G1 and G2 are weakly equivalent
whenever L(G1) = L(G2). G1 and G2 are strongly equivalent when they are
weakly equivalent and they generate the same parse trees, given some renaming
(if needed) of non-terminal symbols.

The above two grammars are weakly but not strongly equivalent.

4.5 Regular grammars
It should be intuitively clear that there are connections between formal grammars and
finite state automata. Most importantly, they both can compute infinite languages using
finite means. A formal grammar is just an abstract model of computation, just like
an automaton is. So, for instance, the grammar 〈{1}, {S}, S, {(S, 1), (S, 1S)}〉 that we
started this chapter with, is equivalent to the finite state automaton Z , below, in the
sense that they correspond to the same formal language, namely {1n | n > 0}.

Z = 〈{1}, {s0, s1}, s0, {s1}, {((s0, 1), s1), ((s1, 1), s1)}〉

As we will see below, formal grammars are much more expressive than finite state au-
tomata. However, there is a certain class of formal grammars that is equivalent to FSAs
in the sense that the languages that these grammars can compute are exactly the regular
languages. This is the class of regular grammars.

Definition 21
Let G = 〈Σ, N, S, P 〉 be a formal grammar. G is a right linear grammar whenever
for every (α, β) ∈ P it is the case that α ∈ N and either β ∈ Σ∗ or β = xX with
x ∈ Σ∗ and X ∈ N . G is a left linear grammar whenever for every (α, β) ∈ P it
is the case that α ∈ N and either β ∈ Σ∗ or β = Xx with x ∈ Σ∗ and X ∈ N . A
grammar is regular when it is either right or left linear.

41

This says that right linear grammars are grammars where all productions rules take one
of two forms: either a non-terminal mapping to a terminal symbol, or a non-terminal
mapping to a terminal symbol followed by a non-terminal one. Left linear grammars are
similar, but with the order of terminal and non-terminal swapped in the second type of
rule. The simple grammar we saw above, 〈{1}, {S}, S, {(S, 1), (S, 1S)}〉, is right-linear.
There is a left linear grammar that derives exactly the same language, namely:

〈{1}, {S}, S{(S, 1), (S, S1)}〉

These grammars are weakly equivalent to each other. In fact, for each left-linear gram-
mar there is a weakly equivalent right-linear grammar, and vice versa. Given this, the
class of languages that can be generated from left-linear grammars is the same as the
class of languages that can be generated from right-linear grammar. These are the reg-
ular languages. Importantly, these are exactly the languages that finite state automata
can recognize.

Theorem 9
If M is a finite state automaton, then there exists a regular grammar G such that
L(G) = L(M). If G is a regular grammar, then there exists a finite state automaton
M such that L(M) = L(G). As a result, the set of languages computable with
regular grammars is the set of regular languages.

I will sketch the proof by going through a procedure to turn a regular grammar into
a finite state automaton and vice versa. Say we have (right-linear) regular grammar
G = 〈Σ, N, S, P 〉. The corresponding FSA is M = 〈Σ, N ∪ {F}, S, {F}, R〉, with R:

R = {((X, x), Y) | (X, xY) ∈ P} ∪ {((X, x), F) | (X, x) ∈ P,X ∈ N, x ∈ Σ}

For example, applying this procedure to 〈{1}, {S}, S, {(S, 1), (S, 1S)}〉, we get:

〈{1}, {S, F}, S, {F}, {((S, 1), F), ((S, 1), S)}〉

More graphically:

S

F

1

1

42

To “translate” an FSA into a corresponding regular grammar, we can do the follow-
ing. Say, M is an FSA of the form 〈Σ, S, s, A,R〉. The corresponding left-linear regular
grammar is G = 〈Σ, S, s, P 〉 with P :

P = {(X, ε) | X ∈ A} ∪ {(X, xY) | ((X, x), Y) ∈ R}

If we apply this to the automaton we gave for the language {1n|n > 0}, we get

〈{1}, {S, F}, S, {(F, ε), (S, 1F), (S, 1S)} or graphically:
S → 1S
S → 1F
F → ε

Although this grammar looks different from the original grammar we gave for this lan-
guage, it is easy to verify that it corresponds to exactly the same language.

The real proof that regular grammars correspond to regular languages involves showing
that these two procedures (translating regular grammars into FSAs and vice versa) work
across the board.

43

5 Context-free languages
In chapter 3 we saw an example of a non-regular language: {0n1n | n ∈ N}. Being non-
regular, this is a language for which no finite state automaton and no regular grammar
exists. So what mechanisms do we have to compute languages like these?

5.1 Push-down automata
As we observed earlier, in order to deal with a language like {0n1n | n ∈ N} we need a
computational mechanism that has some capacity of remembering things. For instance,
the number of 0s that an automaton has encountered in the input. This is why finite
state automata are unsuitable - they simply have no notion of memory whatsoever. For
these kinds of languages, we therefore turn to a different kind of automaton called a
push-down automaton or PDA.

A PDA is like an FSA, except that it comes with a so-called stack. A stack is a special
kind of string that can only be accessed at one end. You can compare it to a pile of
books viewed from the top, so you can only see the top book. Also, if you want to add
a book, you can only add it at the top and if you want to take a book from it, you can
only remove the top-most book. This is called the last in first out principle.

A stack has two operations defined on it. First of all, “pop” takes the last symbol in the
stack (if there is any) and removes it. Second, “push” takes the stack and a symbol and
concatenates them, so that the pushed symbol is now the top of the stack.

A push down automaton uses a stack to keep track of what happens when it reads an
input string. The only difference between a finite state automaton and a push down
automaton is that apart from reading a symbol from the string, state transitions addi-
tionally potentially involve popping and pushing a string to and from the stack. As such,
the stack is the external memory of the automaton.

Here’s an example. The following (graphical depiction of a) PDA corresponds to the
language {0n1n | n ∈ N}.

s0 s1

s2s3

ε, ε → $

0, ε → 0

1, 0 → ε

1, 0 → ε

ε, $ → ε

This automaton works as follows. Each transition is labeled with three things, notated:
a, b → c. Here, a is what is read from the input, b is what is popped from the stack

44

and c is what is pushed to the stack. So, at the start this automaton reads nothing and
pops nothing. It simply pushes “$” to the stack and transitions to s1. The “$” symbol is
simply to have a marker in the stack of where the reading of input started. Once in s1,
if it reads a 0, then it pops nothing, and pushes a 0 to the stack. This way, for each 0
that is read, there is a 0 on the stack. Once a 1 is read, it pops the top 0 from the stack
and pushes nothing, transitioning to s2. There, it keeps on popping 0s for each 1 that
is read. The automaton transitions to the acceptance state s3 if there is nothing left to
read and “$” can be popped from the stack. That is, the automaton only accepts if after
reading all the 1s, there are no more 0s on the stack. As you can verify yourself, this is
only possible if the number of 0s and 1s is exactly the same.

The computation of a string can be captured in a table that keeps track of the current
state and the current stack for each symbol read from the input. For instance, for the
input 000111:

read state stack
s0 ε

ε s1 $
0 s1 $0
0 s1 $00
0 s1 $000
1 s2 $00
1 s2 $0
1 s2 $
ε s3 ε

Formally, a pushdown automaton looks a lot like a finite state automaton, except with
the addition of the stack and the added complexity of the transitions:

Definition 22
A push-down automaton is a 6-tuple 〈Σ,Γ, S, s, A,R〉, such that:

• Σ is a finite set (the language alphabet)

• Γ is a finite set (the stack alphabet)

• S is a finite set of states

• s ∈ S, the start state

• A ⊆ S, the acceptance states

• R ⊆ (S × Σ∗ × Γ∗)× (S × Γ∗), the transition relation

Let’s unpack the transition relation. It is a relation between triples consisting of a state,
a string of symbols of the alphabet of the language and a string of symbols of the stack
alphabet on the one hand and pairs consisting of a state and a string of symbols from

45

the stack language on the other. So, given a state, a symbol (or string) that is being read
from the input string and a symbol (or string) to be popped from the top of the stack,
there is a transition to a new state and a string of stack symbols is pushed to the stack.

The PDA I gave for {0n1n | n ∈ N} is given as follows:

A = 〈{0, 1}, {$, 0, 1}, {s0, s1, s2, s3}, s0, {s0, s3}, R〉

where R is represented as:

(s0, ε, ε) → (s1, $)
(s1, 0, ε) → (s1, 0)
(s1, 1, 0) → (s2, ε)
(s2, 1, 0) → (s2, ε)
(s2, ε, $) → (s3, ε)

which is a more convenient representation for the set

{((s0, (ε, ε)), (s1, $)), ((s1, (0, ε)), (s1, 0)), ((s1, (1, 0)), (s2, ε)), ((s2, (1, 0)), (s2, ε)),
((s2, (ε, $)), (s3, ε))}

Definition 23
Let P = 〈Σ,Γ, S, s, A,R〉 be a push-down automaton. Let x ∈ Σ∗ and σ ∈ Σ∗.
(So, xσ is also a member of Σ∗.) Let t, t′ ∈ S and u, v, w ∈ Γ∗. A computation
step for P is defined as the relation `P , which is defined as:

(t, xσ, vu) `P (t′, σ, wu) if and only if ((t, x, v), (t′, w)) ∈ R.

A computation for P is a sequence of computation steps.

The relation `∗
P , the “computes” relation for push down automaton P is the re-

flexive and transitive closure of `P . That is, it is the smallest relation such that
`P⊆`∗

P and such that it is reflexive and transitive.

The triples in these computation steps represent situations the push-down automaton
can be in. For instance (s1, 0111, 100) is a situation of an automaton in state s1, which
still needs to read 0111 (so 0 is the next symbol it reads), where the stack has 100 in it
(so 1 is the symbol that could potentially be popped).

Here is an example of an application of these definitions for the PDA A that I gave for
{0n1n | n ∈ N}.

(s0, 000111, ε) `A (s1, 000111, $) `A (s1, 00111, $0) `A (s1, 0111, $00)
`A (s1, 111, $000) `A (s2, 11, $00) `A (s2, 1, $0) `A (s2, ε, $) `A (s3, ε, ε)

46

As a consequence:

(s0, 000111, ε) `∗
A (s3, ε, ε)

Given the definition of the ‘computes’ relation, we can now define acceptance for push-
down automata:

Definition 24
Let P = 〈Σ,Γ, S, s, A, r〉 be a push-down automaton. P accepts σ ∈ Σ∗ if and
only if for some f ∈ A:

(s, σ, ε) `∗
P (f, ε, ε)

That is, a string is accepted if we can find a computation that starts in the start
state with an empty stack and ends in an acceptance state with an empty stack
(and the whole string read).

As we did with acceptance for finite state automata, the language corresponding to the
automaton is simply the set of accepted strings.

Definition 25
If P = 〈Σ,Γ, S, s, A, r〉 is a push-down automaton, then:

L(P) = {σ | there exists a f ∈ A : (s, σ, ε) `∗
P (f, ε, ε)}

5.2 Context-free grammar
Before, we saw that there is a formal grammar counterpart to finite state automaton,
namely regular (that is, either left-linear or right-linear) grammars. The formal grammar
equivalent of a push-down automaton is a context-free grammar.

Definition 26
Let G = 〈Σ, N, S, P 〉 be a formal grammar. G is a context-free grammar (CFG) if
and only ifP ⊆ N×(Σ∪N)∗. That is, a context-free grammar is a formal grammar
where all production rules have a single non-terminal symbol on the left-hand side
and a string of made up of terminal and non-terminal symbols on the right-hand
side.

Note, first of all, that every regular grammar is context-free. Productions like S → S1
are left-linear, but they also fall within what is allowed to qualify as context-free. CFGs
allow formuchmore than linear productions, though. For instance, S → 1S1 is a typical
production rule that qualifies as context-free but not linear/regular.

Here is a context-free grammar for {0n1n | n ∈ N}:

〈{0, 1}, {S}, S,
{

S → ε
S → 0S1

}
〉

47

CFGs and PDAs correspond to exactly the same class of languages, the context-free lan-
guages. I will not give the proof here, but to get the intuition, here’s a procedure to
construct a PDA that is equivalent to some CFG.

Let C = 〈Σ, N, S, P 〉 be a CFG. The corresponding PDA A will be the sextuple:

〈Σ,Σ ∪N, {s0, s1}, s0, {s1}, R〉
(So, the stack alphabet is the set of terminal and non-terminal symbols of the CFG and
there are just two states, one a start state and the other an acceptance state.) The tran-
sitions R are constructed as follows: First of all, R contains the transition (s0, ε, ε) →
(s1, S). This is a transition to the acceptance state by reading nothing and pushing
the start non-terminal symbol to the stack. Every rule in P is converted into a tran-
sition in R. If X → σ is a production, then the corresponding transition in R is
(s1, ε,X) → (s1, σ). This transition reads nothing, but pops the non-terminal X from
the stack and pushes the right-hand side of the production to it. Finally, for each termi-
nal symbol x, we add a transition (s1, x, x) → (s1, ε).

To see how this works, let us take the above CFG for {0n1n | n ∈ N}. Given this CFG,
the corresponding PDA will look like:

〈{0, 1}, {0, 1, S}, {s0, s1}, s0, {s1}, R〉

Following the above instructions, R will amount to:

(s0, ε, ε)→ (s1, S)
(s1, ε, S)→ (s1, ε)
(s1, ε, S)→ (s1, 0S1)
(s1, 0, 0)→ (s1, ε)
(s1, 1, 1)→ (s1, ε)

Graphically, this PDA looks as follows:

s0 s1
ε, ε → S

ε, S → ε

ε, S → 0S1

0, 0 → ε 1, 1 → ε

If we take this PDA and try to find a computation that proves acceptance of 000111, we
find:

(s0, 000111, ε) ` (s1, 000111, S) ` (s1, 000111, 0S1) ` (s1, 00111, S1)
` (s1, 00111, 0S11) ` (s1, 0111, S11) ` (s1, 0111, 0S111) ` (s1, 111, S111)
` (s1, 111, 111) ` (s1, 11, 11) ` (s1, 1, 1) ` (s1, ε, ε)

This PDA is quite different from the one I gave earlier, but – as you may verify – it
accepts exactly the same language.

48

5.3 Chomsky Normal Form
Compared to linear grammars, the productions of context-free grammar can become
very complicated. For instance, S → AaBbCcDdEe is a valid context-free production.
Such rules complicate parsing quite a bit. For this and various other reasons, some of
which we will see below, it is a good idea to impose some stricter contraints on the
shape of context-free productions. This is the so-called Chomsky Normal Form (CNF).
The rules are as follows:

• Atmost one production contains the empty string, namely a productionwhichmaps
the start symbol to ε.

• All other productions take one of two forms:

A → BC a non-terminal mapped to two non-terminals

A → a a non-terminal mapped to an element of the alphabet

• Finally, the start symbol is not allowed to occur on the right-hand side.

These restriction would only make sense if they are harmless with respect to the class
of languages that can be expressed. Indeed, CNF context-free grammars correspond to
exactly the same class of languages as non-CNF CFGs (and PDAs) correspond to. So, we
can obtain simpler rules and parse trees, without compromising on expressivity.

Part of howwe know that CNF CFGs correspond to non-CNF CFGs is because there is an
algorithm that can tranform each non-CNF CFGs into a (weakly) equivalent grammar
in Chomsky normal form. It is important to know this algorithm, so you can always
produce a CNF on the basis of some context-free grammar.

Say, G = 〈Σ, N, S,R〉 is a context-free grammar. If we want to turn it into Chomsky
normal form grammar, this grammar will take the following form: G′ = 〈Σ, Nc, Sc, Rc〉.
Here, Sc is an entirely new non-terminal symbol. That is, Sc 6∈ N . Obviously, we do
require that Sc ∈ Nc. We now consider R and change the productions in several ways
until we have a CNF.

The first kind of change is adding a rule Sc → S. This simply connects the old start
symbol to the new one, in order to make sure the start symbol doesn’t occur on the
right-hand side of any rule. Note that this is not a production that is accordance to the
CNF rules, but ignore this for now, we will deal with that problem in a later step.

The second change we need to consider is to get rid of any rules containing the empty
string. So, if R contains a rule X → ε, we remove this rule and make sure that this
omission doesn’t have consequences elsewhere. For instance, if some other rule looks
like Y → AXb, then we need to double this rule to account for the option that X is
empty. So, the new production set will not just have Y → AXb, but also Y → Ab. This
way the new grammar does all that the old one did, without making use of ε. Note that
these rules are not yet CNF, but that will be fixed later.

49

The third manipulation that will bring us closer to CNF is to remove rules that have
a single non-terminal on the right-hand side. A rule like X → Y can be removed by
looking at rules with Y on the left-hand side and replacing Y in X → Y with that
right-hand side. For instance, if Y → y, then we can replace X → Y with X → y.

The next change is to deal with rules that have more than two symbols on the right-
hand side. Say, we have X → α1α2α3 . . . αn where αi could be both terminal and
non-terminal symbols. We can replace this with binary branching rules as follows.

X → α1X1

X1 → α2X2

X2 → α3X3
... ...

Xn → αn

Note that we need to make sure that X1, . . . Xn 6∈ N . These have to be fresh non-
terminal symbols that have not been used elsewhere in the grammar. For all but the
final rule it is the case that these are only CNF productions if the αi is a non-terminal. If
it is not, then the next step deal with this. The final rule is only CNF if αn is a terminal.
If it is not, our earlier strategy for dealing with rules with just a single non-terminal on
the right hand side will take care of it.

The final kind of non-CNF production we need to be able to deal with are rules where
there are two elements on the right-hand side, but one of them is a terminal. This is
easy. A rule like X → zY can be replaced by the combination X → ZY and Z → z.
(Similarly, for when the terminal is right of the non-terminal.)

This is all we need to transform any non-CNF CFG into a CFG that does adhere to the
strict constraints of Chomsky normal form. Here’s an example, the CFG for {0n1n | n ≥
0} that I gave earlier:

S → ε
S → 0S1

S0 → S
S → ε
S → 0S1

S0 → S
S → ε
S → 0X
X → S1

S0 → S
S → ε
S → Y X
Y → 0
X → SZ
Z → 1

S0 → ε
S0 → Y X
S → ε
S → Y X
Y → 0
X → SZ
Z → 1

S0 → ε
S0 → Y X
S → Y X
Y → 0
X → SZ
X → 1
Z → 1

the original grammar adding new start sym-
bol

reducing the right
hand sides > 2

removing terminals
from the right-hand
sides

removing productions
with one non-terminal
on right-hand side

removing productions
(other than the start
symbol) that involve
the empty string

Here is an example parse tree corresponding to the derivation of the string 000111. The
table next to the parse tree shows the left-most derivation corresponding to this parse
tree.

50

S0

X

Z

1

S

X

Z

1

S

X

1

Y

0

Y

0

Y

0

left-most derivation of 000111
(S0, (Y,X)) S0 → Y X
(S0, ((Y, 0), X)) Y → 0
(S0, ((Y, 0), (X, (S, Z)))) X → S Z
(S0, ((Y, 0), (X, ((S, (Y,X)), Z)))) S → X Z
(S0, ((Y, 0), (X, ((S, ((Y, 0), X)), Z)))) Y → 0
(S0, ((Y, 0), (X, ((S, ((Y, 0), (X, (S, Z)))), Z)))) X → S Z
(S0, ((Y, 0), (X, ((S, ((Y, 0), (X, ((S, (Y,X)), Z)))), Z)))) S → Y X
(S0, ((Y, 0), (X, ((S, ((Y, 0), (X, ((S, ((Y, 0), X)), Z)))), Z)))) Y → 0
(S0, ((Y, 0), (X, ((S, ((Y, 0), (X, ((S, ((Y, 0), (X, 1))), Z)))), Z)))) X → 1
(S0, ((Y, 0), (X, ((S, ((Y, 0), (X, ((S, ((Y, 0), (X, 1))), (Z, 1))))), Z)))) Z → 1
(S0, ((Y, 0), (X, ((S, ((Y, 0), (X, ((S, ((Y, 0), (X, 1))), (Z, 1))))), (Z, 1))))) Z → 1

5.4 Pumping lemma
Consider the following CFG in Chomsky normal form. The start symbol is S. Next
to the grammar is an example parse tree, corresponding to the derivation of the string
01101001. (Ignore the colours for now.)

S → AB
A → AB
B → BA
A → 0
B → 1

S

B

A

B

1

A

0

B

A

0

B

1

A

B

A

0

B

1

A

B

1

A

0
Now note the following. Since the grammar is in CNF, each parse tree will have at most
binary branching at each node. So, the width of a tree at each level n of branching is
at most 2n. (The root node is level 0, so the tree has width 20 = 1 there. The next
level down is the first branching, level 1 and has width 21 = 2. Etc.) Given the relation
between the width and height of the tree we can deduce from the size of the string what
the height of the tree will minimally be. Since the leaves of the tree will be arrived at via
unary branching (as per Chomsky normal form), a tree of n branching levels will have
at most 2n symbols in the string it derived. The tree above branches on three levels and
does so maximally and, so, its number of leaves is 23. Reversely, if we didn’t have the
tree for this string, we could still conclude that the height of the tree, which we define
as the number of levels with branchings, will be at least 3.

Let a parse tree path be a string starting with the root and ending with a terminal that
represents the link between the root node and the terminal in a parse tree. For instance,
SAAA0, SABA0, SBBB1 are examples of paths in the tree above. The grammar above
only has 3 non-terminals. Since the height (in terms of number of branchings) of the
tree is 3, there will be a paths from the root node to a leaf that contain 4 non-terminals
(as in the examples I just gave). This entails that there must be paths from the root
node (S) to a leaf that contain the same non-terminal more than once, as it indeed does.

51

Given that this repetition was possible once, it must be the case that it is possible more
times, and it must be the case that the repetition could have been omitted. That is, such
repetitions show that stuff can be pumped, just like we discovered for regular languages.
Let’s illustrate this for the tree above.

Consider the B node that is coloured red in the tree above. That node illustrates a deriva-
tion B ⇒∗ 10. But this means we should be able to replace the blue node B with a copy
of the red node B. So, the following should also be a parse tree for this grammar.

S

B

A

B

1

A

0

B

A

0

B

A

0

B

1

A

B

A

0

B

1

A

B

1

A

0

The idea behind the pumping lemma for context-free languages generalises this idea of
repeatability. Consider the following abstract parse tree for a string uvwxy, from an
unknown CNF context-free grammar. (The triangular shapes represent unknown sub-
trees that derive the (sub)strings u, v, w, x and y.)

yT

xT

w

v

u

Given this tree, we know that uvwxy belongs to the language. But we also know that T
derives vwx. As a result, we know that we can replace the lowest node T with the parse
tree for T⇒∗vwz, resulting in a parse tree for uv2wx2y.

52

yT

xT

xT

w

v

v

u

Clearly, we can repeat this as many times as we want. Also, we could replace the sub-
tree rooting in the top-most T with the small tree for T⇒ w, which would result in
the string uwy. That is, given the fact that we saw a parse tree for uvwxy with two
occurrences of T, we know that for all i ≥ 0, the string uviwxiy is in the language.

All this is the intuition behind the pumping lemma for context-free languages. Here’s
the formal statement of the lemma:

Theorem 10
Every infinite context-free language L is such that there exists a number m, such
that for every string σ ∈ L where |σ| ≥ m, σ can be divided up as uvwxy and the
following hold:

1. |vwx| ≤ m

2. |vx| ≥ 1

3. For every i ≥ 0: uviwxiy ∈ L

As we saw above, as soon as we find a path in a parse tree that contains a repetition of
non-terminal, we have evidence of other strings in the language. As soon as we have a
subtree rooted in non-terminal T that contains a node T deeper in that subtree, we can
replace that node in the subtree with the subtree itself. This holds of paths of arbitrary
length, as long as they exceed the pumping length. However, to make the lemma easy to
use, we can focus on the repetition that is as close to the bottom of the tree as possible.
That is, if there is a path longer than m, then for some non-terminal T , there will be
a minimal subtree rooted in T with exactly one other occurrence of T deeper in that
subtree. This subtree cannot be longer than m. If it was longer, then it must contain
some other repetition in it - and it wouldn’t be minimal. This is why the lemma can
state that |vwx| ≤ m.

The second condition in the lemma |vx| ≥ 1 holds because the closest the repeated non-

53

terminals are in the subtree that derives vwx is one node apart. As the following trees
illustrate, that would result in either v or x being empty.

T

X

x

T

w

T

T

w

X

v

As soon as the repeated nodes are further apart neither v nor x can be empty:

T

X

x

T

w

Y

v
(†)

Because we know there is a repetition, the two trees where the T nodes are one node
apart are the shortest the string vwx can be. In other words, at most one of v or x can
be empty, but not both.

The intuition behind the third condition in the lemma we saw above already. As soon
as we have a repetition of non-terminals, such as in the tree (†) above, we can use it to
pump. The tree is evidence for T ⇒∗ vwx as well as for T ⇒∗ w. By substituting the
subtree rooted in T that derivesw by the tree rooted in T deriving vwx, we get evidence
for T ⇒∗ vvwxx. Since we can do this arbitrarily many times, we have evidence for
T ⇒∗ viwxi for i ≥ 0.

I won’t prove the lemma here, but hope the intuition behind the lemma sketched above
suffice to understand how it works. As with the pumping lemma for regular languages,
the typical application of the pumping lemma is only useful to prove that a language
does not belong to the class. That is, we apply the above lemma if we want to prove
that a language isn’t context-free. If we encounter a language L and prove using the
pumping lemma for regular languages that it is not regular, the next step could be to
prove either that it is context-free (by providing a PDA or CFG for it) or that it is not
context-free by applying the above lemma. As we saw above, all regular languages are
context-free (any linear grammar is context-free), so once we know that a language is
not context-free, then we also know that it is not regular.

Consider the languageL = {anbncn | n ≥ 0}. Notice first (informally) that this language
is not regular. We won’t be able to construct an FSA for this language, for exactly the
same reasons as we won’t be able to construct an FSA for the language {anbn | n ≥ 0}.
But while this latter language is context-free, L is neither regular nor context-free. We
can show this by applying the pumping lemma. Let’s assume that L is context-free and
that the pumping length is n. Then consider σ = anbncn. Since |σ| ≥ n (in fact, |σ| > n),
the properties mentioned in the lemma should now hold for some decomposition σ =
uvwxy. The first property is that |vwx| ≤ n. Given this, vwx either contains no as or it

54

contains no cs. (If vwx contains both, it should also contain n bs, which makes it longer
than n.) It follows from this that when we pump uviwxiy we end up with strings that
either contain more cs or bs than as or more as or bs than cs. These resulting strings are
not part of the language, which contradicts our assumption. This proves that L is not
context-free.

5.5 Closure properties
As before with regular languages, it is interesting to consider closure properties of
context-free languages. This may in some cases help us deduce the complexity of a
language from the complexity of other languages.

Context-free languages are closed under union, concatenation and Kleene star. It is
relatively easy to see why, using context-free grammars. Say we have two CFGs, G1 =
〈Σ1, N1, S1, P1〉 and G2 = 〈Σ2, N2, S2, P2〉. Assume that N1 ∩ N2 = ∅. (Note, that
we can always rename the non-terminals of a grammar and get a strongly equivalent
grammar in return. In other words, this assumption is not essential to the proof.) It
is now very easy to build context-free grammars that correspond to L(G1) ∪ L(G2),
L(G1) · L(G2) and L(G1)

∗. Since we know that L(G1) and L(G2) are context-free (we
have CFGs for them), it will follow that context-free languages are closed under union,
concatenation and Kleene star.

To build CFGs for the language obtained by union or concatenation, all we need to do
is construct a new grammar 〈Σ1 ∪ Σ2, N1 ∪ N2 ∪ {S}, S, P 〉, where S 6∈ N1 ∪ N2 and
P is as follows:

P = P1 ∪ P2 ∪ {S → S1, S → S2} union
P = P1 ∪ P2 ∪ {S → S1 S2} concatenation

To obtain (L(G1))
∗ we can take the grammar 〈Σ1, N1∪{S}, S, P1∪{S → SS1, S → ε}〉.

Here’s an example. Consider the following two CFGs with start symbol S1 and S2,
respectively.

S1 → 1 S1 0
S1 → 10

S2 → 1 S2 0
S2 → 110

These correspond to {1n0n | n ≥ 1} and {1n+10n | n ≥ 1}, respectively. To obtain the
union of these languages, we can simply construct the following grammar.

S → S1

S → S2

S1 → 1 S1 0
S1 → 10
S2 → 1 S2 0
S2 → 110

To obtain the concatenation of the two languages we construct the following:

55

S → S1S2

S1 → 1 S1 0
S1 → 10
S2 → 1 S2 0
S2 → 110

Finally, if we want to construct a grammar for {1n0n | n ≥ 1}∗, which is the language
{ε, 1n0n, 1n0n1m0m, 1n0n1m0m1k0k . . . |n ≥ 1,m ≥ 1, k ≥ 1 . . .}, the following gram-
mar will do:

S → SS1

S → ε
S1 → 1 S1 0
S1 → 10

For regular languages, we showed that the complement of any such language is regular
as well. This is not the case for context-free languages.

Theorem 11
Context-free languages are not closed under complementation.

Proof
Take L1 = {1i2i3j | i ≥ 0 and j ≥ 0} and L2 = {1i2j3j | i ≥ 0 and j ≥ 0}.
Both are context-free. (Check this by providing a CFG for the languages.) Let us
assume that context-free languages are closed under complementation. Then L1

andL2 are context-free. Given the fact that context-free language are closed under
union, L1 ∪ L2 is also context free. Call this language L. L1 is the language that
has sequences of 1s followed by sequences of 2s, then sequences of 3s in such a
way that the numer of 1s and 2s is not equal. L2 is similar except that the number
of 2s and 3s are not equal. So, L is the language with strings like this with either
(or both) the number of 1s and 2s or the number of 2s and 3s not being equal.
Now take the complement of L: the language of strings with 1s followed by 2s
and 3s, where the number of 1s and 2s are equal and the number of 2s and 3s are
equal. So, L = {1i2i3i | i ≥ 0}. Since L is context-free and the assumption is that
complements of context-free languages are context-free, then we have to conclude
that L is context-free. But it clearly is not. In fact, L was our prime example of a
language that is not context-free. This shows that our assumption that context-free
languages are closed under complementation must be false.

Theorem 12
Context-free languages are not closed under intersection.

56

Proof
Oncemore, takeL1 = {1i2i3j | i ≥ 0 and j ≥ 0} andL2 = {1i2j3j | i ≥ 0 and j ≥
0}. Note that L1 ∩ L2 = {1i2i3i | i ≥ 0}, which is not context-free.

5.6 Mirroring versus copying, and natural language
Consider the languages M and C , respectively the mirror language and the copy lan-
guage:

M = {ssR | s ∈ {0, 1}∗}
C = {ss | s ∈ {0, 1}∗}

Here, the operation ·R returns the reverse of the string is operates on. So, if s = 01,
then ssR = 0110. So, M contains all string so that the first half of the string is a string
in {0, 1}∗ and the second half is the reverse of this string. The copy language takes
any string that is made up of two consecutive exact copies of a string over the alphabet
{0, 1}.
Note that neither of these languages is regular. (The proofs are a good exercise). Lan-
guageM is context-free, which can be proved easily by providing the following context-
free grammar with start symbol S.

S → 0S0
S → 1S1
S → 11
S → 00
S → ε

The copy language, on the other hand, is not context-free. To prove this, we walk
through an application of the pumping lemma. If C were context-free, then there must
be a pumping length n. Let’s then consider the string 0n1n0n1n ∈ C . We decompose
this string into uvwxy such that |vwx| < n. It follows that vwx is one of two types: (i)
it contains only 1s or only 0s; (ii) it is made up of a series of 1s followed by a sequences
of 0s or made up of a series of 0s followed by a series of 1s. In case (i) pumping would
increase the number of 1s or 0s in one part of the string without adjusting the 1s and 0s
elsewhere. The result is not an element of C . Note that in case (ii) v and x will contain
fewer than n 1s or 0s. Also, either u will contain n 0s or y will contain n 1s (or both).
So, the situation looks like one of these (the red vertical line is there to help you spot
where the coping takes place):

0n 1n−j 1j | 0k︸ ︷︷ ︸
vwx

0n−k 1n 0n−j 0j 1k︸ ︷︷ ︸
vwx

1n−k | 0n 1n 0n 1n | 0n−j 0j 1k︸ ︷︷ ︸
vwx

1n−k

In the right-most situation, we cannot pump. The number of 0s and 1s left of the copy
line is n, but if we pump there will be more 0s and/or 1s right of the copy line. The same

57

holds for the situation in the middle. Here, there are n 0s and 1s on the right-hand side
of the copy line and so if we pump we’ll also loose the copying property. So, the only
interesting case is the left-most one. It is instructive to go through all the possible ways
vwx could be carved up. Let’s first consider the case that v is empty. Then there are two
possibilities. First, x contains only 0s. If this is the case, then pumping will result in a
string with more 0s right of the copy line than on the left. Second, x contains all 0s but
also some 1s. If we then remove x, the resulting string should still be in the language,
but it cannot be, because the number of 0s left of the copy line will now exceed those
right of the line (and vice versa for the number of 1s). We can go through similar options
for the case where x is empty, with the same result. Finally, we consider the case where
v and x are both not empty. Now v will contain at least one 1 and x will contain at least
one 0. So, if we pump, we will increase the 1s on the left hand side of the copy line and
we will increase the 0s on the right hand side of the copy line. The resulting string will
not be in the language. This exhausts our options and proves that c is not context-free.

A crucial difference between mirroring and copying is that the former but not the latter
can be achievedwith center-embedding. Center-embedding is recursion that is nested,
in the sense that the recursive step takes place within a string, rather than at the edge
of that string. This is why {0n1n | n ≥ 0} is context-free: once we have a string in that
language, we can build a new string but splitting it in half and nesting 01 between the
two halves. The way these strings are built causes a very typical dependency, illustrated
here:

0 0 0 1 1 1

The language {0n1n2n | n ≥ 0} is not context-free (as we saw earlier). This is because
the strings simply cannot be built by having nested dependencies. There will always be
crossed dependencies. For instance,

0 0 0 1 1 1 2 2 2

Similarly, the copy language also cannot be constructed using center embedding. Here
it is very clear what the dependencies are, since the symbols in the copied string have
to be repeated in the second half of the string, symbol by symbol. For instance, the
following string is in C :

0 1 0 0 1 0

There’s been considerable discussion in the linguistic literature on whether natural lan-

58

guage is ever not context-free. That is, can we find natural languages where we see
phenomena that involve recursion that creates crossed, not just nested dependencies.
Notice, first, that English has clear examples of center embedding. Consider the fol-
lowing sentence consisting of a determiner (the), a noun (fish) and a verb (smelled).
Schematically, you could thus see this sentence as a sequence DNV.

(8) The fish smelled. DNV

These sentences can be nested as followes:

(9) The fish the cat ate smelled DNDNVV

(10) The fish the cat my father loves ate smelled DND-
NDNVVV

For a while, Dutch was seen as a candidate language that shows crossing dependen-
cies (Huybregts, Utrecht working papers in Linguistics, 1979). Consider the following
embedded clause, for instance:

(11) … dat
that

Anne
Anne

Marie
Marie

Piet
Piet

zag
saw

helpen
help

schilderen.
paint.

“…that Anne saw that Marie was helping Piet paint.”

This sentence contains the pattern Name Name Name Verb Verb Verb. Crucially, how-
ever, the first name is the subject of the first verb, the second one of the second verb etc.
So, this is clearly a case of crossing dependencies.

(12) Anne Marie Piet zag helpen schilderen

Note that the same sentence in German is nested and not crossed:

59

(13) … daß
that

Anne
Anne

Marie
Marie

Piet
Piet

anstreichen
paint

helfen
help

sah.
saw.

“…that Anne saw that Marie was helping Piet paint.”

(14) Anne Marie Piet anstreichen helfen sah

The problem with Huybregts’ argument was that from a purely syntactic point of view,
Dutch still looks context-free (Gazdar & Pullum, Linguistics & Philosophy, 1982). It sim-
ply contains the pattern Namen Verbn, which can be generated using center-embedding.
A counter-argument may be that even if Dutch syntax is context-free, it seems that
Dutch semantics cannot be that. There exists, however, a language very close to Dutch
which displays crossing dependencies clearly in syntax. In Schwiizerdütsch (Swiss Ger-
man), sentences close to the above Dutch one exist, with the same word order, but with
the addition of case marking, which allowed Shieber (Linguistics & Philosophy, 1985) to
strengthen Huybregts’ argument to a purely syntactic one.

60

6 Beyond context-free grammars
6.1 The Chomsky hierarchy
The formal grammars and automata that I discussed so far are all examples of models
of computation. We saw that the simplest of these models, regular grammars and finite
state automata, describe a class of languages called the regular languages. Some lan-
guages are not regular and for some of these languages we could employ a context-free
grammar or, equivalently, a push-down automaton. As we saw in the previous chapter,
some languages are not even context-free and so will need to be computed by something
more expressive than the models discussed up to now.

The ensuing picture is one of a hierarchy of language classes, eachwith their ownmodels
of computation. This hierarchy is known as the Chomsky hierarchy and it is given below.

The Chomsky hierarchy

Language class Automaton type Formal grammar type
Regular languages finite state regular grammar
Context-free languages push-down context-free grammar
Context-sensitive languages linear bounded context-sensitive grammar
Recursively enumerable languages Turing machine unrestricted grammar

You should read this table as providing inclusion relations. The regular languages are a
subset of context-free languages, which are a subset of the so-called context-sensitive
languages, which are a subset of the recursively enumerable languages. That last set is
the set of all computable decision problems, so exactly the languages for which there
exists a Turing machine. The definition of formal grammar that we gave in chapter 4, in
its fully unrestricted form is equivalent to a Turing machine.

Another way to read the table is as specifying what model is suitable for which class.
Unrestricted grammars can compute recursively enumerable languages, but since every
regular language is recursively enumerable, an unrestricted grammar is (for instance)
also suitable for regular languages. Similarly, every regular grammar is a context-free
grammar, and every context-free grammar counts as an unrestricted grammar.

In these lecture notes, we won’t discuss Turing machines in detail. The thing you should
know is that Turing machines constitute the model for computability. What the table
above shows us is that there is yet another level between context-free and the level con-
stituting all computable languages (the recursively enumerable ones). In the remainder
of this chapter we zoom in on this class of context-sensitive languages.

61

6.2 Context-sensitive grammars and languages
A context-sensitive grammar is like a regular and context-free grammar, except that
it is less restricted in the kinds of productions it allows. The only restriction is that
the length of the left-hand side of a production is less or equal that the length of the
right-hand side. This means that it not only allows productions like X → XxY z, as
context-free grammars do, but also productions like XxY → XzY z.

Definition 27
Let G = 〈Σ, N, S, P 〉 be a formal grammar. G is a context-sensitive grammar
(CSG) if and only if P ⊆ {(α, β) | α, β ∈ (Σ ∪N)∗ and |α| ≤ |β|}.

Context-sensitive grammars can handle unlimited dependencies. Consider, for instance,
the following CSG with start symbol S.

S → 123 | 1X23
1Y → 11 | 11X
X2 → 2X
X3 → Y 233
2Y → Y 2

This grammar corresponds to the language {1n2n3n | n ≥ 1}. Here is a derivation using
this grammar for the string 111222333:

S ⇒ 1X23 ⇒ 12X3 ⇒ 12Y 233 ⇒ 1Y 2233
⇒ 11X2233 ⇒ 112X233 ⇒ 1122X33
⇒ 1122Y 2333 ⇒ 112Y 22333 ⇒ 11Y 222333
⇒ 111222333

There is a class of automata that correspond to context-sensitive grammars, called linear
bounded automata (LBAs). Basically, an LBA is a Turing machine that can only use a
part of the tape that has a length which is a linear function of the input length. Together,
LBAs and CSGs desribe the class of context-sensitive languages. As summarised in the
Chomsky hierarchy, this class is a proper subset of the recursively enumerable languages
and a proper superset of the context-free languages.

It is commonly assumed that natural languages are at least context-free and at most
context-sensitive. Generalising to the worst case, this may imply that we should use
context-sensitive grammars to describe natural languages. This, however, is overkill,
since most of natural language seems context-free and the expressivity of CGSs is much
higher than needed for natural languages. An example of this is the Bach (or MIX)
language:

Bach = {σ ∈ {0, 1, 2}∗ | the number of 0s = the number of 1s = the number of 2s}

62

This is the language that consists of strings built from the symbols 0, 1 and 2 such that
each string in the language has an equal number of each of these three symbols. So, it in-
cludes 001222110 and 212120010, but not 021102220. This language is context-sensitive.
The kind of dependencies displayed in this language, however, is something entirely
alien to natural languages. A kind of free word order corresponding to a language like
Bach does not exist in the natural world. In part for this reason, CGSs are not used in
modern computational linguistics. Rather, natural language is placed in a level that is
not included in the traditional Chomsky hierarchy, namely a level inbetween context-
free and context-sensitive: the class of mildly context-sensitive languages.

This means we could present an altered Chomsky hierarchy as follows:

The extended Chomsky hierarchy

Language class Automaton type Formal grammar type
Regular languages finite state regular grammar
Context-free languages push-down context-free grammar
Mildly context-sensitive languages - tree adjoining grammar
Context-sensitive languages linear bounded context-sensitive grammar
Recursively enumerable languages Turing machine unrestricted grammar

6.3 Tree Adjoining Grammars
So far, we’ve been representing (parse) trees as very simple objects, pairs of (pairs of)
terminals and non-terminals. In this section we will discuss a grammar formalism that
is very much like context-free grammar, except that the operations governed by the
grammar are operations on trees instead of on symbols. Because of this, it is handy to
have a somewhat more sophisticated representation as a tree, namely the one familiar
from graph theory.

Definition 28
A labeled tree is a triple 〈V,E, r〉 paired with a labeling l such that:

• V is a finite set (the so-called vertices or nodes of the tree)

• E ⊆ V × V (the so-called edges)

• r ∈ V (the root node)

• {v ∈ V | (v, r) ∈ E} = ∅ (no incoming edges for the root node)

• For all w ∈ V \{r} : |{v ∈ V | (v, w) ∈ E}| = 1 (exactly one incoming edges
for all other nodes)

• For all w ∈ V : (r, w) ∈ E∗, where E∗ is the reflexive transitive closure of E

63

• l : V → N with N some set of labels

So, for example 〈{1, 2, 3, 4}, {(4, 2), (4, 1), (2, 3)}, 4〉 is the following tree:

4

12

3

Here is an example labeling L for this tree: {(1,man),(2,Det),(3,the),(4,NP)}, which would
make this the following tree:

NP

manDet

the

Note that you can’t define a syntactic parse tree by taking the union of the sets of termi-
nals and non-terminals as the set of vertices. The problem would be that many syntactic
trees contain the same non-terminal multiple times. For instance,

〈{NP,A,N,large,blue,ball},{(NP,NP),(NP,A),(A,large),(NP,A),(A,blue),(NP,N),(N,ball)}〉

corresponds not to the tree on the left, but rather to the non-tree graph on the right:

NP

NP

N

ball

A

blue

A

large

NP

A N

blue large ball

The tree on the left is for instance given by:

〈{1, 2, 3, 4, 5, 6, 7}, {(1, 2), (1, 3), (3, 4), (3, 5), (2, 6), (4, 7), (5, 8)}, 1〉
l = {(1,NP),(2,A),(3,NP),(4,A),(5,N),(6,large),(7,blue),(8,ball)}

For ease of reference, I define two handy way of talking about the root and leaves of a
tree:

Definition 29
Let T be a tree 〈V,E, r〉 with labeling l. We write

√
T for the tree root, r. Also,

we write T̃ for the yield of the tree: the string made up from the leaves of the tree,
read from left to right.

64

Given this conception of trees, we can define two operations on trees that resemble
things that typically happen in a context-free grammar. The first of these is the operation
of substitution:

Definition 30
Let T1 = 〈V,E, r〉 be a tree with labeling l1. Let T2 = 〈V ′, E ′, r′〉 be a tree with
labeling l2. Let V ∩ V ′ = ∅, or if V ∩ V ′ 6= ∅, then rename the vertices in T2 so
that V and V ′ are disjoint. Let v ∈ V be a leaf of T1 and let l1(v) = l2(r

′). The
substitution of T2 in T1 at node v, notated T1[v, T2], is defined as follows.

T1[v, T2] = 〈(V ∪ V ′) \ {v}, E ′′, r〉

Where E′′ = E \ {(n, v)|(n, v) ∈ E} ∪ E ′ ∪ {(n, r′)|(n, v) ∈ E}.
The labeling of T1[v, T2] is l1 ∪ l2.

Consider the trees X1 and X2. (I am showing the labels, not the vertices).

S

VP

PP

NP

N

mat

D

the

P

on

V

sat

NP

ND

the

X1

=

N

cat

X2

=

As the definition says, substitution can only take place at a node that is a leaf and with a
tree that is rooted in the same label as that leaf node. This means that we can substitute
X2 in X1 at the left most node that is labeled N .

65

S

VP

PP

NP

N

mat

D

the

P

on

V

sat

NP

ND

the

N

cat

S

VP

PP

NP

N

mat

D

the

P

on

V

sat

NP

N

cat

D

the

=

X3

=

The other operation that will be relevant below is adjunction. Adjunction differs from
substitution in that it constitutes a recursive step.

Definition 31
Let T1 = 〈V,E, r〉 be a tree with labeling l1 and v some node in V . Let T2 =
〈V ′, E ′, r′〉 be a tree with labeling l2, such that there exists a leaf node f , the foot
node, such that l1(v) = l2(f) = l2(r

′). Let V ∩ V ′ = ∅, or if V ∩ V ′ 6= ∅, then
rename the vertices in T2 so that V and V ′ are disjoint. Adjoining T2 into T1 at v,
notated T1[v, T2], is defined as follows.

T1[v, T2] = 〈V ∪ V ′ \ {v}, E ′′, r〉

Where E′′ = E \ {(n,m) | n = v or m = v} ∪ E′ ∪ {(n, r′) | (n, v) ∈ E} ∪
{(f,m) | (v,m) ∈ E}.
The labeling of T1[v, T2] is once again l1 ∪ l2.

Consider X3 above and tree X4 below. X4 has a foot node marked with a ∗.

VP

VP∗ADV

often

X4

=

We can adjoin X4 into X3 at the node in X4 labeled VP:

66

S

VP

PP

NP

N

mat

D

the

P

on

V

sat

NP

N

cat

D

the

VP

VP∗ADV

often

S

VP

VP

PP

NP

N

mat

D

the

P

on

V

sat

ADV

often

NP

N

cat

D

the

=

A tree adjoining grammar is a grammar that takes trees as its primitives and uses adjunc-
tion and substitution to build a language of trees and a corresponding string language.

Definition 32
A tree adjoining grammar G is a 6-tuple 〈Σ, N, S, I, A, C〉:

• Σ is a set of terminal symbols,

• N is a set of non-terminal symbols,

• S ∈ N is the start symbol,

• I is a set of initial trees,

• A is a set of auxiliary trees

• C a set of constraints (to be discussed later)

A tree is an initial tree if the labels of its leaves are all inΣ∪{ε}∪N and the labels
of its internal nodes are all in N .

A tree is an auxiliary tree if its top node is labeled X ∈ N , the labels of its leaves
are all in Σ ∪ {ε} ∪ N , the labels of its internal nodes are all in N . Furthermore,
one leaf is labeled X and is called the foot node and is marked with ∗.

Derivation consists of taking the elementary (i.e. initial and auxiliary) trees and applying
substitution and adjunction to them.

Definition 33
Let G = 〈Σ, N, S, I, A, C〉 be a tree adjoining grammar. The set of derived trees of
G, D(G) is the smallest set such that:

67

• I ⊆ D(G)

• A ⊆ D(G)

• T [n, T ′] ∈ D(G) for any T, T ′ ∈ D(G) such that T [n, T ′] is defined

The tree language of G: T (G) = {T | T ∈ D(G) and T̃ ∈ Σ∗ and l(
√
T) = S}.

The string language of G: L(G) = {T̃ | T ∈ T (G)}.

Here is an example TAG.

S

ε

S

S

aS∗

a

S

S

bS∗

b

This TAG approximates the copy language. For instance, we can derive aabaab as fol-
lows:

S

S

aS∗

a

S

S

aS∗

a

S

S

S

aS

aS∗

a

a

S

S

bS

b

S

S

S

S

bS

aS

aS

b

a

a

S

ε

S

S

S

S

bS

aS

aS

ε

b

a

a

⇒ ⇒ ⇒

Thecolour coding ismeant to indicate which parts of the tree are due towhich operation.
As you can see, two adjunctions and a substitution result in the string aabaab. Note,
however, that the grammar does not correctly yield the copy language. This is because
nothing stops us from adjoining to different nodes labeled S than the ones I used above:

68

S

S

S

aS

aS∗

a

a

S

S

bS

b

S

S

S

bS

S

aS

aS

a

b

a
⇒

Following substitution of the leaf node S with the empty string, this will yield the string
abaaab, which is not in the copy language. In order to make TAGs more expressive,
constraints on adjunction are needed. This is the component C of a TAG that I have so
far not discussed.

Definition 34
In a tag G = 〈Σ, N, S, I, A, C〉 the adjunction constraints C is a pair (fOA, fSA)
such that:

• fOA : {v | v is a vertex in some tree γ ∈ I ∪ A} → {0, 1} (obligatory ad-
junction)
This is a characteristic function describing the set of nodes that have obliga-
tory adjunction.

• fSA : {v | v is a vertex in some tree γ ∈ I∪A} → ℘(A)} (selective adjunc-
tion)
This maps nodes to the set of auxiliary trees that can be adjoined there.

If a node has v is such that fOA(v) = 1, then we have to adjoin at this point in the tree.
Such nodes are marked with OA. If fOA(v) = 0 and fSA(v) = ∅, then we cannot adjoin
at this node. Such nodes are marked with NA. It is assumed that at least all leaves of
trees are NA.

With these tools, the copy language can be given in TAG.

S

ε

SNA

S

aS∗NA

a

SNA

S

bS∗NA

b

69

This TAG blocks derivations like those of abaaab above, while allowing derivation like
those of aabaab above.

70

	Formal languages
	Strings
	The Kleene star
	Formal languages and decision problems
	Computability
	How many languages are there?
	Formal versus natural language

	Finite state automata
	Formal definition
	Non-determinism
	Acceptance
	Determinism
	Finite state transducers

	Regular languages
	Regular languages and finite state automata
	Closure properties
	Non-regularity
	The pumping lemma for regular languages

	Formal grammars
	Formal definition
	Derivation
	Parse trees and ambiguity
	Grammar equivalence
	Regular grammars

	Context-free languages
	Push-down automata
	Context-free grammar
	Chomsky Normal Form
	Pumping lemma
	Closure properties
	Mirroring versus copying, and natural language

	Beyond context-free grammars
	The Chomsky hierarchy
	Context-sensitive grammars and languages
	Tree Adjoining Grammars

